Flow Phenomena in Rubber Samples

1950 ◽  
Vol 23 (1) ◽  
pp. 67-88
Author(s):  
Fritz Rössler

Abstract A more extended investigation was made of the surprising flow phenomena which were found in an earlier study of rubber at low temperatures. The tensile apparatus was reconstructed so that a dead-weight load could be applied to the rubber test-specimen. Determinations of the dependence of the rate of flow on time of stressing, initial elongation, magnitude of the stress, and temperature showed that a simple law can be derived for expressing the flow phenomena. Yield point, change in color, and deterioration in physical properties, as well as the reversibility of these phenomena were investigated and are discussed. The phenomena of flow at room temperature are expressed by the same constants as at lower temperatures. Only the effective stress increases at low temperatures and only by this change does flow become perceptible. Different types of rubber were compared, and all showed approximately the same value for the flow constant. The essential characteristics of the flow phenomenon can be explained, on a basis of the theory of highly elastic materials, by their microliquid state of aggregation. This applies to the high degree of dependence of the mechanical properties of rubber on the temperature.

Author(s):  
Thao A. Nguyen

It is well known that the large deviations from stoichiometry in iron sulfide compounds, Fe1-xS (0≤x≤0.125), are accommodated by iron vacancies which order and form superstructures at low temperatures. Although the ordering of the iron vacancies has been well established, the modes of vacancy ordering, hence superstructures, as a function of composition and temperature are still the subject of much controversy. This investigation gives direct evidence from many-beam lattice images of Fe1-xS that the 4C superstructure transforms into the 3C superstructure (Fig. 1) rather than the MC phase as previously suggested. Also observed are an intrinsic stacking fault in the sulfur sublattice and two different types of vacancy-ordering antiphase boundaries. Evidence from selective area optical diffractograms suggests that these planar defects complicate the diffraction pattern greatly.


2021 ◽  
Vol 26 (2) ◽  
pp. 47
Author(s):  
Julien Eustache ◽  
Antony Plait ◽  
Frédéric Dubas ◽  
Raynal Glises

Compared to conventional vapor-compression refrigeration systems, magnetic refrigeration is a promising and potential alternative technology. The magnetocaloric effect (MCE) is used to produce heat and cold sources through a magnetocaloric material (MCM). The material is submitted to a magnetic field with active magnetic regenerative refrigeration (AMRR) cycles. Initially, this effect was widely used for cryogenic applications to achieve very low temperatures. However, this technology must be improved to replace vapor-compression devices operating around room temperature. Therefore, over the last 30 years, a lot of studies have been done to obtain more efficient devices. Thus, the modeling is a crucial step to perform a preliminary study and optimization. In this paper, after a large introduction on MCE research, a state-of-the-art of multi-physics modeling on the AMRR cycle modeling is made. To end this paper, a suggestion of innovative and advanced modeling solutions to study magnetocaloric regenerator is described.


Introduction .—In nearly all the previous determinations of the ratio of the specific heats of gases, from measurements of the pressures and temperature before and after an adiabatic expansion, large expansion chambers of fror 50 to 130 litres capacity have been used. Professor Callendar first suggests the use of smaller vessels, and in 1914, Mercer (‘Proc. Phys. Soc.,’ vol. 26 p. 155) made some measurements with several gases, but at room temperature only, using volumes of about 300 and 2000 c. c. respectively. He obtained values which indicated that small vessels could be used, and that, with proper corrections, a considerable degree of accuracy might be obtained. The one other experimenter who has used a small expansion chamber, capacity about 1 litre, is M. C. Shields (‘Phys. Rev.,’ 1917), who measured this ratio for air and for hydrogen at room temperature, about 18° C., and its value for hydroger at — 190° C. The chief advantage gained by the use of large expansion chambers is that no correction, or at the most, a very small one, has to be made for any systematic error due to the size of the containing vessels, but it is clear that, in the determinations of the ratio of the specific heats of gases at low temperatures, the use of small vessels becomes a practical necessity in order that uniform and steady temperature conditions may be obtained. Owing, however, to the presence of a systematic error depending upon the dimensions of the expansion chamber, the magnitude of which had not been definitely settled by experiment, the following work was undertaken with the object of investigating the method more fully, especially with regard to it? applicability to the determination of this ratio at low temperatures.


2015 ◽  
Vol 641 ◽  
pp. 286-293
Author(s):  
Beata Leszczyńska-Madej ◽  
Maria W. Richert ◽  
Agnieszka Hotloś ◽  
Jacek Skiba

The present study attempts to apply Equal-Channel Angular Pressing (ECAP) to 99.99% pure copper. ECAP process was realized at room temperature for 4, 8 and 16 passes through route BC using a die having angle of 90°. The microstructure of the samples was investigated by means both light and transmission electron microscopy. Additionally the microhardness was measured and statistical analysis of the grains and subgrains was performed. Based on Kikuchi diffraction patterns misorientation was determined. There were some different types of bands in the microstructure after deformation. The shear bands, bands and in the submicron range the microshear bands and microbands are a characteristic feature of the microstructure of copper. Also characteristic was increasing of the number of bands with increasing of deformation and mutually crossing of the bands. The intersection of a bands and microbands leads to the formation of new grains with the large misorientation angle. The measured grain/subgrain size show, that the grain size is maintained at a similar level after each stage of deformation and is equal to d = 0.25 – 0.32 μm.


Visual purple is soluble and stable in a mixture of glycerol and water (3:1). At room temperature the spectrum of such a solution is identical with that of the aqueous solution. At — 73° C the peak of the absorption curve is higher and narrower than at room temperature, and it is shifted towards longer waves. The product of photodecomposition at — 73° C has a spectrum in ­ dependent of pH and is at low temperatures thermostable and photostable, but at room temperature it decomposes therm ally to indicator yellow. The primary product appears to be identical with transient orange. The quantum yields of the photoreaction at low and at room temperature are of the same order.


1995 ◽  
Vol 403 ◽  
Author(s):  
D. V. Dimitrov ◽  
A. S. Murthy ◽  
G. C. Hadjipanayis ◽  
C. P. SWANN

AbstractFe-O and Co-O films were prepared by DC magnetron sputtering in a mixture of Ar and O2 gases. By varying the oxygen to argon ratio, oxide films with stoichiometry FeO, Fe3O4, α-Fe2O3, CoO and Co3O4 were produced. TEM studies showed that the Fe – oxide films were polycrystalline consisting of small almost spherical grains, about 10 nm in size. Co-O films had different microstructure with grain size and shape dependent on the amount of oxygen. X-ray diffraction studies showed that the grains in Fe-O films were randomly oriented in contrast to Co-O films in which a <111> texture was observed. Pure FeO and α-Fe2O3 films were found to be superparamagnetic at room temperature but strongly ferromagnetic at low temperatures in contrast to the antiferromagnetic nature of bulk samples. A very large shift in the hysteresis loop, about 3800 Oe, was observed in field cooled Co-CoO films indicating the presence of a large unidirectional exchange anisotropy.


Author(s):  
Aafrin Waziri ◽  
Charu Bharti ◽  
Mohammed Aslam ◽  
Parween Jamil ◽  
Aamir Mirza ◽  
...  

Background: The processes of chemo- and radiation therapy-based clinical management of different types of cancers are associated with toxicity and side effects of chemotherapeutic agents. So, there is always an unmet need to explore agents to reduce such risk factors. Among these, natural products have generated much attention because of their potent antioxidant and antitumor effects. In the past, some breakthrough outcomes established that various bacteria in the human intestinal gut are bearing growth-promoting attributes and suppressing the conversion of pro-carcinogens into carcinogens. Hence, probiotics integrated approaches are nowadays being explored as rationalized therapeutics in the clinical management of cancer. Methods: Here, published literature was explored to review chemoprotective roles of probiotics against toxic and side effects of chemotherapeutics. Results: Apart from excellent anti-cancer abilities, probiotics are bearing and alleviate toxicity and side effects of chemotherapeutics, with a high degree of safety and efficiency. Conclusion: Preclinical and clinical evidence suggested that due to the chemoprotective roles of probiotics against side effects and toxicity of chemotherapeutics, their integration in chemotherapy would be a judicious approach.


2021 ◽  
Vol 18 ◽  
Author(s):  
Rohini Kharwade ◽  
Payal Badole ◽  
Nilesh Mahajan ◽  
Sachin More

: As compared to other nano polymers, dendrimers have novel three dimensional, synthetic hyperbranched, nano-polymeric structures. The characteristic of these supramolecular dendritic structures has a high degree of significant surface as well as core functionality in the transportation of drugs for targeted therapy, specifically in host-guest response, gene transfer therapy and imaging of biological systems. However, there are conflicting shreds of evidence regarding biological safety and dendrimers toxicity due to their positive charge at the surface. It includes cytotoxicity, hemolytic toxicity, haematological toxicity, immunogenicity and in vivo toxicity. Therefore to resolve these problems surface modification of the dendrimer group is one of the methods. From that point, this review involves different strategies which reduce the toxicity and improve the biocompatibility of different types of dendrimers. From that viewpoint, we broaden the structural and safe characteristics of the dendrimers in the biomedical and pharmaceutical fields.


2000 ◽  
Vol 29 (3) ◽  
pp. 489-496 ◽  
Author(s):  
Alfredo O. R. Carvalho ◽  
Luiz G. E. Vieira

High quality DNA for molecular studies can be easily extracted from fresh specimens. However, live samples are difficult to keep for long periods thus making their preservation a serious problem, specially when they are collected and transported from remote locations. In order to establish an efficient method to preserve Atta spp. (leaf-cutting ants) for RAPD analysis, six different storage methods were examined: 1) -70°C; 2) 95% ethanol at -20°C; 3) 95% ethanol at 4°C; 4) 95% ethanol at room temperature; 5) silica gel at room temperature; and 6) buffer (0.25 M EDTA, 2.5% SDS, 0.5 M Tris-HCl, pH 9.2) at room temperature. DNA was extracted (Cheung et al., 1993 - modified) and examined after 90, 210 and 360 days of storage. Freshly killed specimens were used as control. DNA yield was measured with a minifluorometer. DNA quality was determined by scanning photographs with a densitometer and the integral of the scan was calculated for DNA of size > 9.4 kb. Data were analyzed using a completely randomized split-plot design with four replicates. All methods were efficient to preserve Atta spp. DNA up to 210 days. At 360 days, DNA was degraded only in 95% ethanol at room temperature, which resulted in RAPD profiles with missing bands. Although preservation at low temperatures is recommended for long periods, methods using silica gel and buffer can be considered satisfactory alternatives when refrigeration and transportation are limiting factors.


Sign in / Sign up

Export Citation Format

Share Document