Steerable antenna with circular-polarization. 2. Selection of optimal scheme

1987 ◽  
Vol 30 (5) ◽  
pp. 473-476
Author(s):  
�. P. Abranin ◽  
L. L. Bazelyan ◽  
A. I. Brazhenko
2020 ◽  
Vol 10 (7) ◽  
pp. 2413 ◽  
Author(s):  
Yuntae Park ◽  
Jihoon Bang ◽  
Jaehoon Choi

A beam-steerable dual-circularly polarized 60 GHz antenna array is proposed. A 1 × 4 dual-fed stacked patch antenna array is integrated with an 8 × 8 Butler matrix. By utilizing the 8 × 8 Butler matrix, the proposed antenna array generates dual-circular polarization with beam-steering capability. The proposed antenna array system demonstrates good reflection coefficients in the frequency band ranging from 55.3 GHz to 64.9 GHz and has a mutual coupling of less than −10 dB over the frequency range of 57.5 GHz–63.2 GHz. At 60 GHz, the maximum gains and beam-steering angles for input ports 2, 4, 5, and 7 are 9.39 dBi at −38°, 10.67 dBi at −11°, 10.63 dBi at +11°, and 9.38 dBi at +39°, respectively. It is also demonstrated that the dual-polarization is well formed by switching the excitation ports. The right-handed circular polarization (RHCP) is formed when four ports from port 1 to port 4 are excited and left-handed circular polarization (LHCP) is formed when four ports from port 5 to port 8 are excited. The proposed antenna array system could be a good candidate for millimeter-wave 5G applications that require wide beam coverage and polarization diversity.


1975 ◽  
Vol 11 (8) ◽  
pp. 609-613
Author(s):  
F. B. Petlyuk ◽  
S. A. Groisman ◽  
Yu. K. Telkov ◽  
M. V. Belov

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yanbin Tan ◽  
Zhe Zhang ◽  
Huili Wang ◽  
Shaobo Zhou

In order to solve the problem on optimal selection of old bridge reinforcement schemes, a decision-making method of gray relation analysis based on fuzzy-AHP weights is proposed. Firstly, the fuzzy-AHP is used to develop the decision index system of old bridge reinforcement schemes and determine the weight of decision indexes. The 0.1–0.9 scale method is introduced as the index judgment criterion, and the weight judgment matrix is established. Through the consistency test, the relative weight vector of each decision index in the index layer is calculated. Secondly, according to the gray relation model of the old bridge reinforcement schemes, the decision matrix is constructed, and the gray relation coefficient matrix is calculated to obtain the gray relation coefficient corresponding to the ideal optimal scheme. Finally, the optimal scheme is determined. Through an engineering example, the reinforcement scheme of a concrete-filled steel tube arch bridge deck system is calculated and analyzed, and the best reinforcement scheme is selected. The optimal selection result is consistent with the actual reinforcement scheme available for the bridge. The decision-making method of gray relation analysis based on fuzzy-AHP weights make the evaluation system more organized and systematic and the index weight more operable and quantitative, reduce the subjective evaluation impact, and make the evaluation result more objective and reliable. Considering the fuzzy and gray information of comparison and selection, the optimal scheme with high feasibility and applicability is selected by the gray relation method.


2020 ◽  
Vol 19 (2) ◽  
pp. 9-18
Author(s):  
V.V. Karnaukh ◽  
◽  
A.D. Krylova ◽  
A.L. Lopatin ◽  
А.S. Mironenkova ◽  
...  

2019 ◽  
Vol 42 ◽  
Author(s):  
Gian Domenico Iannetti ◽  
Giorgio Vallortigara

Abstract Some of the foundations of Heyes’ radical reasoning seem to be based on a fractional selection of available evidence. Using an ethological perspective, we argue against Heyes’ rapid dismissal of innate cognitive instincts. Heyes’ use of fMRI studies of literacy to claim that culture assembles pieces of mental technology seems an example of incorrect reverse inferences and overlap theories pervasive in cognitive neuroscience.


1975 ◽  
Vol 26 ◽  
pp. 395-407
Author(s):  
S. Henriksen

The first question to be answered, in seeking coordinate systems for geodynamics, is: what is geodynamics? The answer is, of course, that geodynamics is that part of geophysics which is concerned with movements of the Earth, as opposed to geostatics which is the physics of the stationary Earth. But as far as we know, there is no stationary Earth – epur sic monere. So geodynamics is actually coextensive with geophysics, and coordinate systems suitable for the one should be suitable for the other. At the present time, there are not many coordinate systems, if any, that can be identified with a static Earth. Certainly the only coordinate of aeronomic (atmospheric) interest is the height, and this is usually either as geodynamic height or as pressure. In oceanology, the most important coordinate is depth, and this, like heights in the atmosphere, is expressed as metric depth from mean sea level, as geodynamic depth, or as pressure. Only for the earth do we find “static” systems in use, ana even here there is real question as to whether the systems are dynamic or static. So it would seem that our answer to the question, of what kind, of coordinate systems are we seeking, must be that we are looking for the same systems as are used in geophysics, and these systems are dynamic in nature already – that is, their definition involvestime.


Sign in / Sign up

Export Citation Format

Share Document