Adaptive system for the active cancellation of a narrowband sound field using a tuning search algorithm

1988 ◽  
Vol 31 (8) ◽  
pp. 687-691
Author(s):  
I. A. Korolev ◽  
A. A. Mal'tsev ◽  
V. V. Cherepennikov
1982 ◽  
Vol 25 (6) ◽  
pp. 472-480
Author(s):  
S. N. Arezamasov ◽  
A. A. Mal'tsev

1988 ◽  
Vol 120 (1) ◽  
pp. 183-189 ◽  
Author(s):  
S.J. Elliott ◽  
P. Joseph ◽  
A.J. Bullmore ◽  
P.A. Nelson

1997 ◽  
Vol 201 (1) ◽  
pp. 43-65 ◽  
Author(s):  
J. Garcia-Bonito ◽  
S.J. Elliott ◽  
M. Bonilha

Acta Acustica ◽  
2021 ◽  
Vol 5 ◽  
pp. 17
Author(s):  
Armin Erraji ◽  
Jonas Stienen ◽  
Michael Vorländer

Noise from traffic, industry and neighborhood is a prominent feature in urban environments. In these environments, sound reaches receiver points through reflections and diffractions. Real-time auralization of outdoor scenarios is a common goal for presenting sound characteristics in a realistic and intuitive fashion. Challenges in this attempt can be identified on many levels, however the most prominent part is sound propagation simulation. Geometrical acoustics has become the de-facto standard for the prediction of acoustic propagation in a virtual scenario. A considerable difficulty is the determination of the diffracted sound field component, because it is a wave effect that must be be explicitly integrated into the search algorithm of valid propagation paths. A deterministic solution to this problem is implemented that establishes propagation paths with an arbitrary constellation of far-field interactions at geometrical boundaries, i.e. reflecting surfaces and diffracting edges in large distance to each other. The result is an open-source code algorithm for propagation paths that follows the wave front normal and assembles metadata required for further acoustic modelling, such as incoming and outgoing angles, reflection material and geometrical details for the construction of the diffracting wedge. Calculation times are outlined and a proof of concept is presented that describes the employment of the propagation algorithm as well as the determination of an acoustic transfer function based on the input of the intermediate path representation. Future research will focus on prioritization of path contributions according to physical and psychoacoustical culling schemes.


1973 ◽  
Vol 16 (2) ◽  
pp. 267-270 ◽  
Author(s):  
John H. Mills ◽  
Seija A. Talo ◽  
Gloria S. Gordon

Groups of monaural chinchillas trained in behavioral audiometry were exposed in a diffuse sound field to an octave-band noise centered at 4.0 k Hz. The growth of temporary threshold shift (TTS) at 5.7 k Hz from zero to an asymptote (TTS ∞ ) required about 24 hours, and the growth of TTS at 5.7 k Hz from an asymptote to a higher asymptote, about 12–24 hours. TTS ∞ can be described by the equation TTS ∞ = 1.6(SPL-A) where A = 47. These results are consistent with those previously reported in this journal by Carder and Miller and Mills and Talo. Whereas the decay of TTS ∞ to zero required about three days, the decay of TTS ∞ to a lower TTS ∞ required about three to seven days. The decay of TTS ∞ in noise, therefore, appears to require slightly more time than the decay of TTS ∞ in the quiet. However, for a given level of noise, the magnitude of TTS ∞ is the same regardless of whether the TTS asymptote is approached from zero, from a lower asymptote, or from a higher asymptote.


1968 ◽  
Vol 11 (1) ◽  
pp. 204-218 ◽  
Author(s):  
Elizabeth Dodds ◽  
Earl Harford

Persons with a high frequency hearing loss are difficult cases for whom to find suitable amplification. We have experienced some success with this problem in our Hearing Clinics using a specially designed earmold with a hearing aid. Thirty-five cases with high frequency hearing losses were selected from our clinical files for analysis of test results using standard, vented, and open earpieces. A statistical analysis of test results revealed that PB scores in sound field, using an average conversational intensity level (70 dB SPL), were enhanced when utilizing any one of the three earmolds. This result was due undoubtedly to increased sensitivity provided by the hearing aid. Only the open earmold used with a CROS hearing aid resulted in a significant improvement in discrimination when compared with the group’s unaided PB score under earphones or when comparing inter-earmold scores. These findings suggest that the inclusion of the open earmold with a CROS aid in the audiologist’s armamentarium should increase his flexibility in selecting hearing aids for persons with a high frequency hearing loss.


Sign in / Sign up

Export Citation Format

Share Document