Modified Earpieces and CROS for High Frequency Hearing Losses

1968 ◽  
Vol 11 (1) ◽  
pp. 204-218 ◽  
Author(s):  
Elizabeth Dodds ◽  
Earl Harford

Persons with a high frequency hearing loss are difficult cases for whom to find suitable amplification. We have experienced some success with this problem in our Hearing Clinics using a specially designed earmold with a hearing aid. Thirty-five cases with high frequency hearing losses were selected from our clinical files for analysis of test results using standard, vented, and open earpieces. A statistical analysis of test results revealed that PB scores in sound field, using an average conversational intensity level (70 dB SPL), were enhanced when utilizing any one of the three earmolds. This result was due undoubtedly to increased sensitivity provided by the hearing aid. Only the open earmold used with a CROS hearing aid resulted in a significant improvement in discrimination when compared with the group’s unaided PB score under earphones or when comparing inter-earmold scores. These findings suggest that the inclusion of the open earmold with a CROS aid in the audiologist’s armamentarium should increase his flexibility in selecting hearing aids for persons with a high frequency hearing loss.

1989 ◽  
Vol 100 (2) ◽  
pp. 154-157 ◽  
Author(s):  
Carissa D. Bennett

This Study evaluated the use of hearing aids by patients with hearing threshold levels of 20 dB or less at 500 and 1000 Hz and 35 dB or less at 2000 Hz. Ninety-eight patients completed a 30-day trial with amplification. Six months later, patients were interviewed by telephone and questioned on hearing aid use and perceived unaided and aided difficulty in various listening environments. Results of the study demonstrated that patients with minimal high-frequency hearing loss can benefit from the use of hearing aids. Ninety-two percent of the patients elected to purchase the hearing aids and 85% considered the aids a worthwhile investment after 6 months of use. Patients showed a mean improvement from moderate unaided to slight aided difficulty at work and in general social situations. The only variable that predicted success with hearing aids was degree of unaided difficulty at work. Patients who perceived less unaided difficulty at work were less likely to obtain benefit from the use of the hearing aids.


2002 ◽  
Vol 13 (07) ◽  
pp. 356-366
Author(s):  
Therese C. Walden ◽  
Brian E. Walden ◽  
Mary T. Cord

This study compared the real-ear response provided by custom-fit hearing aids to the closest matching fixed-format disposable hearing aids in patients with precipitous high-frequency hearing loss. Laboratory and field measures of aided performance were obtained to compare patient performance with the custom-fit and fixed-format hearing aids. In addition, coupler versus real-ear response differences were compared for the two hearing aid types. The results revealed that relatively close approximations to the real-ear aided responses of the custom-fit instruments were possible for most participants using seven fixed acoustic formats. No significant differences in mean performance between the two instrument types were observed for aided speech recognition or field ratings of aided performance, although mean patient satisfaction was lower for the disposable hearing aids. The real-ear to coupler difference was greater for the disposable hearing aid than for the custom-fit instruments, presumably owing to its deeper insertion into the ear canal.


2020 ◽  
Vol 5 (1) ◽  
pp. 36-39
Author(s):  
Mariya Yu. Boboshko ◽  
Irina P. Berdnikova ◽  
Natalya V. Maltzeva

Objectives -to determine the normative data of sentence speech intelligibility in a free sound field and to estimate the applicability of the Russian Matrix Sentence test (RuMatrix) for assessment of the hearing aid fitting benefit. Material and methods. 10 people with normal hearing and 28 users of hearing aids with moderate to severe sensorineural hearing loss were involved in the study. RuMatrix test both in quiet and in noise was performed in a free sound field. All patients filled in the COSI questionnaire. Results. The hearing impaired patients were divided into two subgroups: the 1st with high and the 2nd with low hearing aid benefit, according to the COSI questionnaire. In the 1st subgroup, the threshold for the sentence intelligibility in quiet was 34.9 ± 6.4 dB SPL, and in noise -3.3 ± 1.4 dB SNR, in the 2nd subgroup 41.7 ± 11.5 dB SPL and 0.15 ± 3.45 dB SNR, respectively. The significant difference between the data of both subgroups and the norm was registered (p


2005 ◽  
Vol 16 (09) ◽  
pp. 653-661
Author(s):  
Francis Kuk ◽  
Denise Keenan ◽  
Chi-Chuen Lau ◽  
Nick Dinulescu ◽  
Richard Cortez ◽  
...  

The present study compared differences in subjective and objective performance in completely-in-the-canal (CIC) hearing aids with conventional uniform 1.5 mm parallel vents and another with a reverse horn vent where the diameter increased from 1.5 mm on the lateral faceplate to 3 mm on the medial opening of the hearing aid. Nine hearing-impaired persons with a high-frequency hearing loss participated. The test battery included unaided in situ thresholds, amount of available gain before feedback, speech in quiet, speech in noise (HINT), subjective ratings of hollowness and tolerance, objective measures of the occlusion effect, and real-ear aided response. Results showed less available gain before feedback but less occlusion effect for subjective ratings and objective measures with the reverse horn vent. This type of vent design may be useful to increase the effective vent diameter of custom (including CIC) hearing aids.


2019 ◽  
Vol 40 (7) ◽  
pp. 865-871 ◽  
Author(s):  
Natalia Yakunina ◽  
Woo Hyun Lee ◽  
Yoon-Jong Ryu ◽  
Eui-Cheol Nam

2017 ◽  
Vol 28 (09) ◽  
pp. 810-822 ◽  
Author(s):  
Benjamin J. Kirby ◽  
Judy G. Kopun ◽  
Meredith Spratford ◽  
Clairissa M. Mollak ◽  
Marc A. Brennan ◽  
...  

AbstractSloping hearing loss imposes limits on audibility for high-frequency sounds in many hearing aid users. Signal processing algorithms that shift high-frequency sounds to lower frequencies have been introduced in hearing aids to address this challenge by improving audibility of high-frequency sounds.This study examined speech perception performance, listening effort, and subjective sound quality ratings with conventional hearing aid processing and a new frequency-lowering signal processing strategy called frequency composition (FC) in adults and children.Participants wore the study hearing aids in two signal processing conditions (conventional processing versus FC) at an initial laboratory visit and subsequently at home during two approximately six-week long trials, with the order of conditions counterbalanced across individuals in a double-blind paradigm.Children (N = 12, 7 females, mean age in years = 12.0, SD = 3.0) and adults (N = 12, 6 females, mean age in years = 56.2, SD = 17.6) with bilateral sensorineural hearing loss who were full-time hearing aid users.Individual performance with each type of processing was assessed using speech perception tasks, a measure of listening effort, and subjective sound quality surveys at an initial visit. At the conclusion of each subsequent at-home trial, participants were retested in the laboratory. Linear mixed effects analyses were completed for each outcome measure with signal processing condition, age group, visit (prehome versus posthome trial), and measures of aided audibility as predictors.Overall, there were few significant differences in speech perception, listening effort, or subjective sound quality between FC and conventional processing, effects of listener age, or longitudinal changes in performance. Listeners preferred FC to conventional processing on one of six subjective sound quality metrics. Better speech perception performance was consistently related to higher aided audibility.These results indicate that when high-frequency speech sounds are made audible with conventional processing, speech recognition ability and listening effort are similar between conventional processing and FC. Despite the lack of benefit to speech perception, some listeners still preferred FC, suggesting that qualitative measures should be considered when evaluating candidacy for this signal processing strategy.


1990 ◽  
Vol 15 (4) ◽  
pp. 321-326
Author(s):  
J. E. DAVIES ◽  
D. G. JOHN ◽  
M. J. JONES

2019 ◽  
Vol 23 ◽  
pp. 233121651882220 ◽  
Author(s):  
Marina Salorio-Corbetto ◽  
Thomas Baer ◽  
Brian C. J. Moore

The objective was to determine the effects of two frequency-lowering algorithms (frequency transposition, FT, and frequency compression, FC) on audibility, speech identification, and subjective benefit, for people with high-frequency hearing loss and extensive dead regions (DRs) in the cochlea. A single-blind randomized crossover design was used. FT and FC were compared with each other and with a control condition (denoted ‘Control’) without frequency lowering, using hearing aids that were otherwise identical. Data were collected after at least 6 weeks of experience with a condition. Outcome measures were audibility, scores for consonant identification, scores for word-final /s, z/ detection ( S test), sentence-in-noise intelligibility, and a questionnaire assessing self-perceived benefit (Spatial and Qualities of Hearing Scale). Ten adults with steeply sloping high-frequency hearing loss and extensive DRs were tested. FT and FC improved the audibility of some high-frequency sounds for 7 and 9 participants out of 10, respectively. At the group level, performance for FT and FC did not differ significantly from that for Control for any of the outcome measures. However, the pattern of consonant confusions varied across conditions. Bayesian analysis of the confusion matrices revealed a trend for FT to lead to more consistent error patterns than FC and Control. Thus, FT may have the potential to give greater benefit than Control or FC following extended experience or training.


2013 ◽  
Vol 24 (02) ◽  
pp. 138-150 ◽  
Author(s):  
Earl E. Johnson

Background: Johnson and Dillon (2011) provided a model-based comparison of current generic hearing aid prescriptive methods for adults with hearing loss based on the attributes of speech intelligibility, loudness, and bandwidth. Purpose: This study compared the National Acoustic Laboratories—Non-linear 2 (NAL-NL2) and Cambridge Method for Loudness Equalization 2—High-Frequency (CAM2) prescriptive methods using adult participants with less high-frequency hearing loss than Johnson and Dillon (2011). Of study interest was quantification of prescribed audibility, speech intelligibility, and loudness. The preferences of participants for either NAL-NL2 or CAM2 and preferred deviations from prescribed settings are also reported. Research Design: Using a single-blind, counter-balanced, randomized design, preference judgments for the prescriptive methods with regard to sound quality of speech and music stimuli were obtained. Preferred gain adjustments from the prescription within the 4–10 kHz frequency range were also obtained from each participant. Speech intelligibility and loudness model calculations were completed on the prescribed and adjusted amplification. Study Sample: Fourteen male Veterans, whose average age was 65 yr and whose hearing sensitivity averaged normal to borderline normal through 1000 Hz sloping to a moderately severe sensorineural loss, served as participants. Data Collection and Analysis: Following a brief listening time (˜10 min), typical of an initial fitting visit, the participants made paired comparison of sound quality between the NAL-NL2 and CAM2 prescriptive settings. Participants were also asked to modify each prescription in the range of 4–10 kHz using an overall gain control and make subsequent comparisons of sound quality preference between prescriptive and adjusted settings. Participant preferences were examined with respect to quantitative analysis of loudness modeling, speech intelligibility modeling, and measured high-frequency bandwidth audibility. Results: Consistent with the lack of difference in predicted speech intelligibility between the two prescriptions, sound quality preferences on the basis of clarity were split across participants while some participants did not have a discernable preference. Considering sound quality judgments of pleasantness, the majority of participants preferred the sound quality of the NAL-NL2 (8 of 14) prescription instead of the CAM2 prescription (2 of 14). Four of the 14 participants showed no preference on the basis of pleasantness for either prescription. Individual subject preferences were supported by loudness modeling that indicated NAL-NL2 was the softer of the two prescriptions and CAM2 was the louder. CAM2 did provide more audibility to the higher frequencies (5–8 kHz) than NAL-NL2. Participants turned the 4–10 kHz gain recommendation of CAM2 lower, on average, by a significant amount of 4 dB when making adjustments while no significant adjustment was made to the initial NAL-NL2 recommendation. Conclusions: NAL-NL2 prescribed gains were more often preferred at the initial fitting by the majority of participating veterans. For those patients with preference for a louder fitting than NAL-NL2, CAM2 is a good alternative. When the participant adjustment from the prescription between 4 and 10 kHz exceeded 4 dB from either NAL-NL2 (2 of 14) or CAM2 (11 of 14), the participants demonstrated a later preference for that adjustment 69% of the time. These findings are viewed as limited evidence that some individuals may have a preference for high-frequency gain that differs from the starting prescription.


Sign in / Sign up

Export Citation Format

Share Document