Theorem on integral inequalities with functional argument

1993 ◽  
Vol 45 (1) ◽  
pp. 151-155
Author(s):  
V. M. Musaev
Filomat ◽  
2017 ◽  
Vol 31 (4) ◽  
pp. 1009-1016 ◽  
Author(s):  
Ahmet Akdemir ◽  
Özdemir Emin ◽  
Ardıç Avcı ◽  
Abdullatif Yalçın

In this paper, firstly we prove an integral identity that one can derive several new equalities for special selections of n from this identity: Secondly, we established more general integral inequalities for functions whose second derivatives of absolute values are GA-convex functions based on this equality.


Author(s):  
Khalid K. Ali ◽  
Mohamed A. Abd El salam ◽  
Emad M. H. Mohamed

AbstractIn this paper, a numerical technique for a general form of nonlinear fractional-order differential equations with a linear functional argument using Chebyshev series is presented. The proposed equation with its linear functional argument represents a general form of delay and advanced nonlinear fractional-order differential equations. The spectral collocation method is extended to study this problem as a discretization scheme, where the fractional derivatives are defined in the Caputo sense. The collocation method transforms the given equation and conditions to algebraic nonlinear systems of equations with unknown Chebyshev coefficients. Additionally, we present a general form of the operational matrix for derivatives. A general form of the operational matrix to derivatives includes the fractional-order derivatives and the operational matrix of an ordinary derivative as a special case. To the best of our knowledge, there is no other work discussed this point. Numerical examples are given, and the obtained results show that the proposed method is very effective and convenient.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yi-Xia Li ◽  
Muhammad Aamir Ali ◽  
Hüseyin Budak ◽  
Mujahid Abbas ◽  
Yu-Ming Chu

AbstractIn this paper, we offer a new quantum integral identity, the result is then used to obtain some new estimates of Hermite–Hadamard inequalities for quantum integrals. The results presented in this paper are generalizations of the comparable results in the literature on Hermite–Hadamard inequalities. Several inequalities, such as the midpoint-like integral inequality, the Simpson-like integral inequality, the averaged midpoint–trapezoid-like integral inequality, and the trapezoid-like integral inequality, are obtained as special cases of our main results.


2021 ◽  
Vol 5 (3) ◽  
pp. 80
Author(s):  
Hari Mohan Srivastava ◽  
Artion Kashuri ◽  
Pshtiwan Othman Mohammed ◽  
Dumitru Baleanu ◽  
Y. S. Hamed

In this paper, the authors define a new generic class of functions involving a certain modified Fox–Wright function. A useful identity using fractional integrals and this modified Fox–Wright function with two parameters is also found. Applying this as an auxiliary result, we establish some Hermite–Hadamard-type integral inequalities by using the above-mentioned class of functions. Some special cases are derived with relevant details. Moreover, in order to show the efficiency of our main results, an application for error estimation is obtained as well.


2020 ◽  
Vol 26 (1) ◽  
pp. 67-77 ◽  
Author(s):  
Silvestru Sever Dragomir

AbstractIn this paper, by the use of the divergence theorem, we establish some integral inequalities of Hermite–Hadamard type for convex functions of several variables defined on closed and bounded convex bodies in the Euclidean space {\mathbb{R}^{n}} for any {n\geq 2}.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Eze R. Nwaeze ◽  
Ana M. Tameru

Abstract We establish new quantum Hermite–Hadamard and midpoint types inequalities via a parameter $\mu \in [0,1]$ μ ∈ [ 0 , 1 ] for a function F whose $|{}_{\alpha }D_{q}F|^{u}$ | α D q F | u is η-quasiconvex on $[\alpha ,\beta ]$ [ α , β ] with $u\geq 1$ u ≥ 1 . Results obtained in this paper generalize, sharpen, and extend some results in the literature. For example, see (Noor et al. in Appl. Math. Comput. 251:675–679, 2015; Alp et al. in J. King Saud Univ., Sci. 30:193–203, 2018) and (Kunt et al. in Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 112:969–992, 2018). By choosing different values of μ, loads of novel estimates can be deduced. We also present some illustrative examples to show how some consequences of our results may be applied to derive more quantum inequalities.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Barış Çelik ◽  
Mustafa Ç. Gürbüz ◽  
M. Emin Özdemir ◽  
Erhan Set

AbstractThe role of fractional integral operators can be found as one of the best ways to generalize classical inequalities. In this paper, we use different fractional integral operators to produce some inequalities for the weighted and the extended Chebyshev functionals. The results are more general than the available classical results in the literature.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yutian Zhang ◽  
Guici Chen ◽  
Qi Luo

AbstractIn this paper, the pth moment exponential stability for a class of impulsive delayed Hopfield neural networks is investigated. Some concise algebraic criteria are provided by a new method concerned with impulsive integral inequalities. Our discussion neither requires a complicated Lyapunov function nor the differentiability of the delay function. In addition, we also summarize a new result on the exponential stability of a class of impulsive integral inequalities. Finally, one example is given to illustrate the effectiveness of the obtained results.


Sign in / Sign up

Export Citation Format

Share Document