An initial-value problem for systems of equations with linearly transformed arguments

1989 ◽  
Vol 44 (5) ◽  
pp. 691-700
Author(s):  
V. N. Semenova

In this, the first of a series of papers on numerical relativity, the characteristic initial value problem is posed in a form suitable for numerical integration. It can be reduced to the solution of two initial value problems for sets of ordinary differential equations (on the initial surfaces) and the solution of two initial value problems for hyperbolic systems of equations, one linear, one quasilinear. The initial data may be specified freely. Subsequent papers will develop numerical solutions of Einstein’s equations with use of this formalism.


2018 ◽  
Vol 5 (1) ◽  
pp. 102-112 ◽  
Author(s):  
Shekhar Singh Negi ◽  
Syed Abbas ◽  
Muslim Malik

AbstractBy using of generalized Opial’s type inequality on time scales, a new oscillation criterion is given for a singular initial-value problem of second-order dynamic equation on time scales. Some oscillatory results of its generalizations are also presented. Example with various time scales is given to illustrate the analytical findings.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1842
Author(s):  
Vladislav N. Kovalnogov ◽  
Ruslan V. Fedorov ◽  
Yuri A. Khakhalev ◽  
Theodore E. Simos ◽  
Charalampos Tsitouras

We consider the scalar autonomous initial value problem as solved by an explicit Runge-Kutta pair of orders 6 and 5. We focus on an efficient family of such pairs, which were studied extensively in previous decades. This family comes with 5 coefficients that one is able to select arbitrarily. We set, as a fitness function, a certain measure, which is evaluated after running the pair in a couple of relevant problems. Thus, we may adjust the coefficients of the pair, minimizing this fitness function using the differential evolution technique. We conclude with a method (i.e. a Runge-Kutta pair) which outperforms other pairs of the same two orders in a variety of scalar autonomous problems.


2021 ◽  
Vol 10 (1) ◽  
pp. 1301-1315
Author(s):  
Eduardo Cuesta ◽  
Mokhtar Kirane ◽  
Ahmed Alsaedi ◽  
Bashir Ahmad

Abstract We consider a fractional derivative with order varying in time. Then, we derive for it a Leibniz' inequality and an integration by parts formula. We also study an initial value problem with our time variable order fractional derivative and present a regularity result for it, and a study on the asymptotic behavior.


Sign in / Sign up

Export Citation Format

Share Document