Significance of compressive residual stress on mode II branch crack growth under mode I fatigue loading

1984 ◽  
Vol 26 (1) ◽  
pp. R25-R28 ◽  
Author(s):  
Etsuo Sasaki ◽  
Akihiko Ohta
2019 ◽  
Vol 9 (10) ◽  
pp. 2006 ◽  
Author(s):  
Makoto Akama

Fatigue tests were performed to estimate the coplanar and branch crack growth rates on rail and wheel steel under non-proportional mixed mode I/II loading cycles simulating the load on rolling contact fatigue cracks; sequential and overlapping mode I and II loadings were applied to single cracks in the specimens. Long coplanar cracks were produced under certain loading conditions. The fracture surfaces observed by scanning electron microscopy and the finite element analysis results suggested that the growth was driven mainly by in-plane shear mode (i.e., mode II) loading. Crack branching likely occurred when the degree of overlap between these mode cycles increased, indicating that such degree enhancement leads to a relative increase of the maximum tangential stress range, based on an elasto–plastic stress field along the branch direction, compared to the maximum shear stress. Moreover, the crack growth rate decreased when the material strength increased because this made the crack tip displacements smaller. The branch crack growth rates could not be represented by a single crack growth law since the plastic zone size ahead of the crack tip increased with the shear part of the loading due to the T-stress, resulting in higher growth rates.


2018 ◽  
Vol 201 ◽  
pp. 683-698 ◽  
Author(s):  
Yu Gong ◽  
Bing Zhang ◽  
Supratik Mukhopadhyay ◽  
Stephen R. Hallett

2019 ◽  
Vol 9 (14) ◽  
pp. 2866 ◽  
Author(s):  
Makoto Akama ◽  
Akira Kiuchi

Rolling contact fatigue cracks in rail and wheel undergo non-proportional mixed mode I/II/III loading. Fatigue tests were performed to determine the coplanar and branch crack growth rates on these materials. Sequential and overlapping mode I and III loading cycles were applied to single cracks in round bar specimens. Experiments in which this is done have been rarely performed. The fracture surface observations and the finite element analysis results suggested that the growth of long (does not branch but grown stably and straight) coplanar cracks was driven mainly by mode III loading. The cracks tended to branch when increasing the material strength and/or the degree of overlap between the mode I and III loading cycles. The equivalent stress intensity factor range that can consider the crack face contact and successfully regressed the crack growth rate data is proposed for the branch crack. Based on the results obtained in this study, the mechanism of long coplanar shear-mode crack growth turned out to be the same regardless of whether the main driving force is in-plane shear or out-of-plane shear.


1987 ◽  
Vol 26 (6) ◽  
pp. 789-807 ◽  
Author(s):  
H. Nayeb-Hashemi ◽  
M.E. Taslim

Sign in / Sign up

Export Citation Format

Share Document