Temperature stresses in multilayer high-pressure vessels taking account of special conditions at the contact boundaries between the layers

1977 ◽  
Vol 13 (1) ◽  
pp. 20-25
Author(s):  
V. N. Zhukova ◽  
P. G. Pimshtein
2014 ◽  
Vol 10 ◽  
pp. 27-31
Author(s):  
R.Kh. Bolotnova ◽  
U.O. Agisheva ◽  
V.A. Buzina

The two-phase model of vapor-gas-liquid medium in axisymmetric two-dimensional formulation, taking into account vaporization is constructed. The nonstationary processes of boiling vapor-water mixture outflow from high-pressure vessels as a result of depressurization are studied. The problems of shock waves action on filled by gas-liquid mixture volumes are solved.


2012 ◽  
Vol 134 (3) ◽  
Author(s):  
Norman L. Newhouse ◽  
George B. Rawls ◽  
Mahendra D. Rana ◽  
Bernard F. Shelley ◽  
Michael R. Gorman

The purpose of this paper is to document the development of ASME Section X Code rules for high pressure vessels for containing hydrogen and to provide a technical basis of their content. The Boiler and Pressure Vessel Project Team on Hydrogen Tanks was formed in 2004 to develop Code rules to address the various needs that had been identified for the design and construction of up to 15,000 psi hydrogen storage vessel. One of these needs was the development of Code rules for high pressure composite vessels with nonload sharing liners for stationary applications. In 2009, ASME approved new Appendix 8, for Section X Code which contains the rules for these vessels. These vessels are designated as Class III vessels with design pressure ranging from 21 MPa (3000 psi) to 105 MPa (15,000 psi) and maximum allowable outside liner diameter of 2.54 m (100 in.). The maximum design life of these vessels is limited to 20 years. Design, fabrication, and examination requirements have been specified, including Acoustic Emission testing at the time of manufacture. The Code rules include the design qualification testing of prototype vessels. Qualification includes proof, expansion, burst, cyclic fatigue, creep, flaw, permeability, torque, penetration, and environmental testing.


1982 ◽  
Vol 22 (6) ◽  
pp. 879-881
Author(s):  
V. N. Akhlyustin

1968 ◽  
Vol 4 (7) ◽  
pp. 585-591
Author(s):  
�. B. Fel'dman ◽  
O. V. Rumyantsev ◽  
G. K. Uik

1986 ◽  
Vol 18 (1) ◽  
pp. 87-92
Author(s):  
A. S. Tsybenko ◽  
B. A. Kuranov ◽  
A. D. Chepurnoi ◽  
V. A. Shaposhnikov ◽  
N. G. Krishchuk

2009 ◽  
Vol 131 (3) ◽  
Author(s):  
R. D. Dixon ◽  
E. H. Perez

The available design formulas for flat heads and blind end closures in the ASME Code, Section VIII, Divisions 1 and 2 are based on bending theory and do not apply to the design of thick flat heads used in the design of high pressure vessels. This paper presents new design formulas for thickness requirements and determination of peak stresses and stress distributions for fatigue and fracture mechanics analyses in thick blind ends. The use of these proposed design formulas provide a more accurate determination of the required thickness and fatigue life of blind ends. The proposed design formulas are given in terms of the yield strength of the material and address the fatigue strength at the location of the maximum stress concentration factor. Introduction of these new formulas in a nonmandatory appendix of Section VIII, Division 3 is recommended after committee approval.


Author(s):  
Takayasu Tahara

Pressure equipment in refinery and petrochemical industries in Japan has been getting old, mostly more than 30 years in operation. Currently, the Japanese regulations for pressure equipment in service are the same as those in existence during the fabrication of the pressure equipment. Accordingly, there is an immediate need for an up to date more advanced “Fitness For Service” (FFS) evaluation requirements for pressure equipment. In order to introduce the latest FFS methodologies to Japanese industries, the High Pressure Institute of Japan (HPI) has organized two task groups. One is a working group for development of a maintenance standard for non-nuclear industries. Its prescribed code “Assessment procedure for crack-like flaws in pressure equipment” is for conducting quantitative safety evaluations of flaws detected in common pressure equipment such as pressure vessels, piping, storage tanks. The other is a special task group to study of API RP579 from its drafting stage as a member of TG579. The FFS Handbook, especially for refinery and petrochemical industries, has been developed based on API RP579 with several modifications to meet Japanese pressure vessel regulations on April 2001. [1] It is expected that both the Standard and FFS handbook will be used as an exemplified standard with Japanese regulations for practical maintenance. This paper presents concepts of “Assessment procedure for crack-like flaws in pressure equipment” HPIS Z101, 2001 [2].


Author(s):  
Martin Bjurstro¨m ◽  
Carl-Gustaf Hjorth

The fabrication of near net shape powder metal (PM) components by hot isostatic pressing (HIP) has been an important manufacturing technology for steel and stainless steel alloys since about 1985. The manufacturing process involves inert gas atomization of powder, 3D CAD capsule design, sheet metal capsule fabrication and densification by HIP in very large pressure vessels. Since 1985, several thousand tonnes of parts have been produced. The major applications are found in the oil and gas industry especially in offshore applications, the industrial power generation industry, and traditional engineering industries. Typically, the components replace castings, forgings and fabricated parts and are produced in high alloy grades such as martensitic steels, austenitic stainless steels, duplex (ferritic/austenitic) stainless steels and nickel based superalloys. The application of PM/HIP near net shapes to pump barrels for medium to high pressure use has a number of advantages compared to the traditional forging and welding approach. First, the need for machining of the components is reduced to a minimum and welding during final assembly is reduced substantially. Mechanical properties of the PM/HIP parts are isotropic and equal to the best forged properties in the flow direction. This derives from the fine microstructure using powder powder and the uniform structure from the HIP process. Furthermore, when using the PM HIP process the parts are produced near net shape with supports, nozzles and flanges integrated. This significantly reduces manufacturing lead-time and gives greater design flexibility which improves cost for the final component. The PM HIP near net shape route has received approval from ASTM, NACE and API for specific steel, stainless steel and nickel base alloys. This paper reviews the manufacturing sequence for PM near net shapes and discusses the details of several successful applications. The application of the PM/HIP process to high pressure pump barrels is highlighted.


Sign in / Sign up

Export Citation Format

Share Document