Stress intensity factor for transient thermal stresses in a transversely isotropic infinite body with an external circular crack

1987 ◽  
Vol 66 (1-4) ◽  
pp. 217-231 ◽  
Author(s):  
N. Noda ◽  
F. Ashida
1992 ◽  
Vol 114 (2) ◽  
pp. 208-212 ◽  
Author(s):  
Y. M. Tsai

The dynamic response of an external circular crack to a harmonic longitudinal wave in a transversely isotropic material is investigated using the techniques of Hankel transform. The wave impinges normally onto the crack surfaces. The inversion integral is evaluated and simplified through a complete contour integration. An exact expression for the dynamic stress intensity factor is obtained in terms of the wave frequency and the anisotropic material constants. The maximum value of the normalized dynamic stress-intensity factor is shown to occur at different wave frequencies for different sample composite and metallic materials. The dynamic effect on the crack surface displacement is also shown to be a function of the wave frequency and the material anisotropy.


Author(s):  
Y. M. Tsai

The forced torsional vibratory motion of an external circular crack in a transversely isotropic composite is investigated by using the method of Hankel transforms. A pair of vibratory torques of equal amplitude is applied at infinity. The infinite integral involved is evaluated through a contour integration to be discontinuous in nature. An exact expression for the dynamic stress intensity factor is obtained in terms of the frequency factor and the anisotropic material constants. The maximum value of the normalized dynamic stress-intensity factor is shown to occur at different frequency factors for the sample fiber-reinforced and metal matrix composites. The distortion of the dynamic crack surface displacement from the associated static displacement depends also on the forcing frequency and the material anisotropy.


Author(s):  
Y. M. Tsai

Abstract The problem of a transversely isotropic composite containing an external circular crack is investigated using the method of Hankel transforms. A pair of tensile vibratory forces of equal amplitude are applied normal to the crack surface at infinity. A complete contour integration is employed to simplify the expressions of the results. An exact expression of the dynamic stress-intensity factor is obtained as a function of the force frequency and the anisotropic material constants. The normalized dynamic stress-intensity factor is shown to have different maximum values at different force frequencies for the sample fiber-reinforced and metal matrix composites. The deviation of the dynamic crack surface displacement from the associated static displacement is also shown to be dependent on the force frequency and the anisotropy of the material.


1984 ◽  
Vol 51 (4) ◽  
pp. 811-815 ◽  
Author(s):  
Y. M. Tsai

The stress distribution produced by the identation of a penny-shaped crack by an oblate smooth spheroidal rigid inclusion in a transversely isotropic medium is investigated using the method of Hankel transforms. This three-part mixed boundary value problem is solved using the techniques of triple integral equations. The normal contact stress between the crack surface and the indenter is written as the product of the associated half-space contact stress and a nondimensional crack-effect correction function. An exact expression for the stress-intensity is obtained as the product of a dimensional quantity and a nondimensional function. The curves for these nondimensional functions are presented and used to determine the values of the normalized stress-intensity factor and the normalized maximum contact stress. The stress-intensity factor is shown to be dependent on the material constants and increasing with increasing indentation. The stress-intensity factor also increases if the radius of curvature of the indenter surface increases.


Sign in / Sign up

Export Citation Format

Share Document