fibre bridging
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 7)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
Vol 8 ◽  
Author(s):  
Mingzhang Lan ◽  
Jian Zhou ◽  
Mingfeng Xu

Engineered cementitious composite (ECC) is a group of ultra-ductile fibre-reinforced cementitious composites, characterised by high ductility and moderate content of short discontinuous fibre. The unique tensile strain-hardening behaviour of ECC results from a deliberate design based on the understanding of micromechanics between fibre, matrix, and fibre–matrix interface. To investigate the effect of fibre properties on the tensile behaviour of ECCs is, therefore, the key to understanding the composite mechanical behaviour of ECCs. This paper presents a study on the fibre-bridging behaviour and composite mechanical properties of ECCs with three types of fibres, including oil-coated polyvinyl alcohol (PVA) fibre, untreated PVA fibre, and polypropylene (PP) fibre. The experimental result reveals that various fibres with different properties result in difference in the fibre-bridging behaviour and composite mechanical properties of ECCs. The difference in the composite mechanical properties of ECCs with different fibres was interpreted by analysing the fibre-bridging behaviour.


Author(s):  
Ajimi S ◽  
Keerthy M Simon ◽  
Bharati Raj

Under fatigue loading, concrete like quasi-brittle materials exhibit softening behaviour since an inelastic zone will be formed in front of the crack tip called the fracture process zone (FPZ). There are various toughening mechanisms that exhibiting in this region. Current design practices for reinforced concrete assumes a zero tensile strength for concrete which is actually overly conservative. In fact, concrete can bear significant tensile stress and strain. Therefore, the tension softening response of RC member should consider in the study. Under fatigue loading, strength and stiffness decrease progressively according to the maximum amplitude and the number of cycles of loading. Fracture plays an important role in failure of normally and lightly reinforced beam. Since FPZ mechanisms and fibre bridging action resist crack propagation, we have to consider these mechanisms while assessing remaining life of RC member. Fatigue failure occurs when applied load is much less than the moment capacity. Such structures susceptible to fatigue load need to be monitored and residual life is to be predicted. This paper is presenting a review on the residual strength assessment on plain and reinforced concrete. The review includes the influence of various tension-softening models in predicting the residual life of plain and reinforced concrete. A comparative study is also conducted in order to assess the residual life by considering various tension softening laws.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 554 ◽  
Author(s):  
Aniello Riccio ◽  
Angela Russo ◽  
Andrea Sellitto ◽  
Cinzia Toscano ◽  
Davide Alfano ◽  
...  

Increasing the Mode I inter-laminar fracture toughness of composite laminates can contribute to slowing down delamination growth phenomena, which can be considered one of the most critical damage mechanisms in composite structures. Actually, the Mode I interlaminar fracture toughness (GIc) in fibre-reinforced composite materials has been found to considerably increase with the crack length when the fibre bridging phenomenon takes place. Hence, in this paper, the fibre bridging phenomenon has been considered as a natural toughening mechanism able to replace embedded metallic or composite reinforcements, currently used to increase tolerance to inter-laminar damage. An experimental/numerical study on the influence of delamination growth on the compressive behaviour of fibre-reinforced composites characterised by high sensitivity to the fibre bridging phenomenon has been performed. Coupons, made of material systems characterised by a variable toughness related to a high sensitivity to the fibre bridging phenomenon and containing artificial through-the-width delaminations, were subjected to a compressive mechanical test and compared to coupons made of standard material system with constant toughness. Out-of-plane displacements and strains were monitored during the compression test by means of strain gauges and digital image correlation to assess the influence of fibre bridging on delamination buckling, delamination growth and on the global buckling of the specimens, including buckling shape changes. Experimental data were combined with a numerical study, performed by means of a virtual crack closure technique based procedure, named SMart Time XB – Fibre Bridging (SMXB-FB), able to mimic the crack bridging effect on the toughness properties of the material system. The combination of numerical results and experimental data has allowed the deformations and the buckling shape changes to be correlated to the onset and evolution of damage and, hence, contributes to improving the knowledge on the interaction of the failure mechanisms in the investigated composite specimens.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1856 ◽  
Author(s):  
Angela Russo ◽  
Andrea Sellitto ◽  
Salvatore Saputo ◽  
Valerio Acanfora ◽  
Aniello Riccio

In this paper, the skin–stringer separation phenomenon that occurs in stiffened composite panels under compression is numerically studied. Since the mode I fracture toughness and, consequently, the skin–stringer separation can be influenced by the fibre bridging phenomenon at the skin–stringer interface, in this study, comparisons among three different material systems with different fibre bridging sensitivities have been carried out. Indeed, a reference material system has been compared, in terms of toughness performance, against two materials with different degrees of sensitivity to fibre bridging. A robust numerical procedure for the delamination assessment has been used to mimic the skin–stringer separation. When analysing the global compressive behaviour of the stiffened panel, intra-laminar damages have been considered in conjunction with skin–stringer debonding to evaluate the effect of the fibre and matrix breakage on the separation between the skin and the stringer for the three analysed material systems. The latter are characterised by different toughness characteristics and fibre bridging sensitivities, resulting in a different material toughness.


2018 ◽  
Vol 203 ◽  
pp. 115-125 ◽  
Author(s):  
T. Pini ◽  
F. Briatico-Vangosa ◽  
R. Frassine ◽  
M. Rink

Sign in / Sign up

Export Citation Format

Share Document