On the Mode I stress intensity factor for an external circular crack with fibre bridging

2010 ◽  
Vol 92 (6) ◽  
pp. 1512-1516 ◽  
Author(s):  
A.P.S. Selvadurai
1992 ◽  
Vol 114 (2) ◽  
pp. 208-212 ◽  
Author(s):  
Y. M. Tsai

The dynamic response of an external circular crack to a harmonic longitudinal wave in a transversely isotropic material is investigated using the techniques of Hankel transform. The wave impinges normally onto the crack surfaces. The inversion integral is evaluated and simplified through a complete contour integration. An exact expression for the dynamic stress intensity factor is obtained in terms of the wave frequency and the anisotropic material constants. The maximum value of the normalized dynamic stress-intensity factor is shown to occur at different wave frequencies for different sample composite and metallic materials. The dynamic effect on the crack surface displacement is also shown to be a function of the wave frequency and the material anisotropy.


Author(s):  
Y. M. Tsai

The forced torsional vibratory motion of an external circular crack in a transversely isotropic composite is investigated by using the method of Hankel transforms. A pair of vibratory torques of equal amplitude is applied at infinity. The infinite integral involved is evaluated through a contour integration to be discontinuous in nature. An exact expression for the dynamic stress intensity factor is obtained in terms of the frequency factor and the anisotropic material constants. The maximum value of the normalized dynamic stress-intensity factor is shown to occur at different frequency factors for the sample fiber-reinforced and metal matrix composites. The distortion of the dynamic crack surface displacement from the associated static displacement depends also on the forcing frequency and the material anisotropy.


2013 ◽  
Vol 05 (04) ◽  
pp. 1350044
Author(s):  
XIANHONG MENG ◽  
ZHAOYU BAI ◽  
MING LI

In this paper, the three-dimensional dynamic problem for an infinite elastic medium weakened by a crack of infinite length and finite width is analyzed, while the crack surfaces are subjected to mode I transient linear tractions. The integral transform approach is applied to reduce the governing differential equations to a pair of coupled singular integral equations, whose solutions can be obtained with the typical iteration method. The analytical solution of the stress intensity factor when the first wave and the first scattered wave reach the investigated crack tip is obtained. Numerical results are presented for different values of the width-to-longitudinal distance ratio z/l. It is found that the stress intensity factor decreases with the arrival of the first scattered longitudinal wave and increases with the arrival of the first scattered Rayleigh wave and tends to be stable. The static value considering both the first scattered wave and the first wave is about 50% greater than that considering only the first wave, and then the effect of the reflected wave is remarkable and deserves further study.


Sign in / Sign up

Export Citation Format

Share Document