Integral representations ofp-class groups in ? p -extensions, semisimple differentials and jacobians

1991 ◽  
Vol 56 (3) ◽  
pp. 254-269 ◽  
Author(s):  
Gabriel D. Villa Salvador ◽  
Manohar L. Madan

Mathematika ◽  
1972 ◽  
Vol 19 (1) ◽  
pp. 105-111 ◽  
Author(s):  
S. Galovich ◽  
I. Reiner ◽  
S. Ullom


Author(s):  
Wolfgang Knapp ◽  
Peter Schmid

AbstractBy a fundamental theorem of Brauer every irreducible character of a finite group G can be written in the field Q(εm) of mth roots of unity where m is the exponent of G. Is it always possible to find a matrix representation over its ring Z[εm] of integers? In the present paper it is shown that this holds true provided it is valid for the quasisimple groups. The reduction to such groups relies on a useful extension theorem for integral representations. Iwasawa theory on class groups of cyclotomic fields gives evidence that the answer is at least affirmative when the exponent is replaced by the order, and provides for a general qualitative result.



Author(s):  
Benson Farb ◽  
Dan Margalit

This chapter explains and proves the Nielsen–Thurston classification of elements of Mod(S), one of the central theorems in the study of mapping class groups. It first considers the classification of elements for the torus of Mod(T² before discussing higher-genus analogues for each of the three types of elements of Mod(T². It then states the Nielsen–Thurston classification theorem in various forms, as well as a connection to 3-manifold theory, along with Thurston's geometric classification of mapping torus. The rest of the chapter is devoted to Bers' proof of the Nielsen–Thurston classification. The collar lemma is highlighted as a new ingredient, as it is also a fundamental result in the hyperbolic geometry of surfaces.





1995 ◽  
Vol 10 (08) ◽  
pp. 1219-1236 ◽  
Author(s):  
S. KHARCHEV ◽  
A. MARSHAKOV

We study the role of integral representations in the description of nonperturbative solutions to c ≤ 1 string theory. A generic solution is determined by two functions, W(x) and Q(x), which behave at infinity like xp and xq respectively. The integral formula for arbitrary (p, q) models is derived, which explicitly realizes a duality transformation between (p, q) and (q, p) 2D gravity solutions. We also discuss the exact solutions to the string equation and reduction condition and present several explicit examples.



2003 ◽  
Vol 10 (3) ◽  
pp. 467-480
Author(s):  
Igor Chudinovich ◽  
Christian Constanda

Abstract The existence of distributional solutions is investigated for the time-dependent bending of a plate with transverse shear deformation under mixed boundary conditions. The problem is then reduced to nonstationary boundary integral equations and the existence and uniqueness of solutions to the latter are studied in appropriate Sobolev spaces.



2008 ◽  
Vol 15 (4) ◽  
pp. 739-752
Author(s):  
Gigla Oniani ◽  
Lamara Tsibadze

Abstract We consider analytic and pluriharmonic functions belonging to the classes 𝐵𝑝(Ω) and 𝑏𝑝(Ω) and defined in the ball . The theorems established in the paper make it possible to obtain some integral representations of functions of the above-mentioned classes. The existence of bounded projectors from the space 𝐿(ρ, Ω) into the space 𝐵𝑝(Ω) and from the space 𝐿(ρ, Ω) into the space 𝑏𝑝(Ω) is proved. Also, consideration is given to the existence of boundary values of fractional integrals of functions of the spaces 𝐵𝑝(Ω) and 𝑏𝑝(Ω).



2007 ◽  
Vol 14 (3) ◽  
pp. 543-564
Author(s):  
Yuri G. Reshetnyak

Abstract In the space , 𝑛-dimensional surfaces are considered having the parametrizations which are functions of the Sobolev class with 𝑝 > 𝑛. The first and the second fundamental tensor are defined. The Peterson–Codazzi equations for such functions are understood in some generalized sense. It is proved that if the first and the second fundamental tensor of one surface are close to the first and, respectively, to the second fundamental tensor of the other surface, then these surfaces will be close up to the motion of the space . A difference between the fundamental tensors and the nearness of the surfaces are measured with the help of suitable 𝑊-norms. The proofs are based on a generalization of Frobenius' theorem about completely integrable systems of the differential equations which was proved by Yu. E. Borovskiĭ. The integral representations of functions by differential operators with complete integrability condition are used, which were elaborated by the author in his other works.



Author(s):  
Jiuya Wang

AbstractElementary abelian groups are finite groups in the form of {A=(\mathbb{Z}/p\mathbb{Z})^{r}} for a prime number p. For every integer {\ell>1} and {r>1}, we prove a non-trivial upper bound on the {\ell}-torsion in class groups of every A-extension. Our results are pointwise and unconditional. This establishes the first case where for some Galois group G, the {\ell}-torsion in class groups are bounded non-trivially for every G-extension and every integer {\ell>1}. When r is large enough, the unconditional pointwise bound we obtain also breaks the previously best known bound shown by Ellenberg and Venkatesh under GRH.



Sign in / Sign up

Export Citation Format

Share Document