Mechanism for deformation of wood as a honeycomb structure I: Effect of anatomy on the initial deformation process during radial compression

1999 ◽  
Vol 45 (2) ◽  
pp. 120-126 ◽  
Author(s):  
Kosei Ando ◽  
Hitoshi Onda
2019 ◽  
Vol 103 (1) ◽  
pp. 003685041988010
Author(s):  
Hui Wang ◽  
Kai Long ◽  
Zheng Zhang ◽  
Congzhi Yi ◽  
Xusong Quan ◽  
...  

Motivated by the need to decrease initial contact seal stress on Nd:glass coated with SiO2 sol–gel film and effectively control the surface contaminants from film debris induced by stress in the assembly process, a novel vacuum clamping method is studied to achieve the purpose of low stress and low contamination. In this article, theoretical analyses, numerical simulations, and field experiments are used to verify the feasibility of this method. Mechanical simulation results indicate that under the same radial compression conditions, the higher the hollowness of the O-ring rubber, the less the contact stress on Nd:glass. In addition, microstructures of the SiO2 sol–gel film are observed by scanning electron microscopy, and the damage mechanism is analyzed in order to optimize assembly stress. By optimizing the distribution of hollowness, the honeycomb structure is proved to have lower contact stress due to its larger deformation. Finally, experimental results verify that the low-stress vacuum clamping method can meet the strict surface cleanliness requirements of Nd:glass. This study also provides a promising method for clean assembly of other large-aperture optics.


Author(s):  
D. L. Rohr ◽  
S. S. Hecker

As part of a comprehensive study of microstructural and mechanical response of metals to uniaxial and biaxial deformations, the development of substructure in 1100 A1 has been studied over a range of plastic strain for two stress states.Specimens of 1100 aluminum annealed at 350 C were tested in uniaxial (UT) and balanced biaxial tension (BBT) at room temperature to different strain levels. The biaxial specimens were produced by the in-plane punch stretching technique. Areas of known strain levels were prepared for TEM by lapping followed by jet electropolishing. All specimens were examined in a JEOL 200B run at 150 and 200 kV within 24 to 36 hours after testing.The development of the substructure with deformation is shown in Fig. 1 for both stress states. Initial deformation produces dislocation tangles, which form cell walls by 10% uniaxial deformation, and start to recover to form subgrains by 25%. The results of several hundred measurements of cell/subgrain sizes by a linear intercept technique are presented in Table I.


Author(s):  
T. Shimizu ◽  
Y. Muranaka ◽  
I. Ohta ◽  
N. Honda

There have been many reports on ultrastructural alterations in muscles of hypokalemic periodic paralysis (hpp) and hypokalemic myopathy(hm). It is stressed in those reports that tubular structures such as tubular aggregates are usually to be found in hpp as a characteristic feature, but not in hm. We analyzed the histological differences between hpp and hm, comparing their clinical manifestations and morphologic changes in muscles. Materials analyzed were biopsied muscles from 18 patients which showed muscular symptoms due to hypokalemia. The muscle specimens were obtained by means of biopsy from quadriceps muscle and fixed with 2% glutaraldehyde (pH 7.4) and analyzed by ordinary method and modified Golgimethod. The ultrathin section were examined in JEOL 200CX transmission electron microscopy.Electron microscopic examinations disclosed dilated t-system and terminal cistern of sarcoplasmic reticulum (SR)(Fig 1), and an unique structure like “sixad” was occasionally observed in some specimens (Fig 2). Tubular aggregates (Fig 3) and honeycomb structure (Fig 4) were also common characteristic structures in all cases. These ultrastructural changes were common in both the hypokalemic periodic paralysis and the hypokalemic myopathy, regardless of the time of biopsy or the duration of hypokalemia suffered.


2021 ◽  
Vol 160 ◽  
pp. 107365
Author(s):  
Zhejian Li ◽  
Qiusong Yang ◽  
Rui Fang ◽  
Wensu Chen ◽  
Hong Hao
Keyword(s):  

2019 ◽  
Vol 14 (1) ◽  
pp. 59-66
Author(s):  
Yu.I. Pimshin ◽  
Yu.V. Zayrov ◽  
G.A. Naumenko

Author(s):  
L.R. Kashapova ◽  
D.L. Pankratov ◽  
V.G. Shibakov

The procedure of automated process reliability evaluation is developed in order to prevent recurrent defects in parts manufactured by die stamping. The procedure is based on the analysis of such factors as part design, material, its mechanical and physical properties; equipment parameters, tool performance, etc. The list of reliability factors may vary according to type of operation as deformation process is different for each group of operations. The adjustment of stamping process reliability performance prevents any defects emerging during production of critical parts as early as the work preparation stage.


Sign in / Sign up

Export Citation Format

Share Document