radial compression
Recently Published Documents


TOTAL DOCUMENTS

248
(FIVE YEARS 58)

H-INDEX

27
(FIVE YEARS 2)

Author(s):  
Sunny Kwok ◽  
Manqi Pan ◽  
Nicholas Hazen ◽  
Xueliang Pan ◽  
Jun Liu

Abstract Elevated intraocular pressure (IOP) may cause mechanical injuries to the optic nerve head (ONH) and the peripapillary tissues in glaucoma. Previous studies have reported the mechanical deformation of the ONH and the peripapillary sclera (PPS) at elevated IOP. The deformation of the peripapillary retina (PPR) has not been well-characterized. Here we applied high-frequency ultrasound elastography to map and quantify PPR deformation, and compared PPR, PPS and ONH deformation in the same eye. Whole globe inflation was performed in ten human donor eyes. High-frequency ultrasound scans of the posterior eye were acquired while IOP was raised from 5 to 30 mmHg. A correlation-based ultrasound speckle tracking algorithm was used to compute pressure-induced displacements within the scanned tissue cross-sections. Radial, tangential, and shear strains were calculated for the PPR, PPS, and ONH regions. In PPR, shear was significantly larger in magnitude than radial and tangential strains. Strain maps showed localized high shear and high tangential strains in PPR. In comparison to PPS and ONH, PPR had greater shear and a similar level of tangential strain. Surprisingly, PPR radial compression was minimal and significantly smaller than that in PPS. These results provide new insights into PPR deformation in response of IOP elevation, suggesting that shear rather than compression was likely the primary mode of IOP-induced mechanical insult in PPR. High shear, especially localized high shear, may contribute to the mechanical damage of this tissue in glaucoma.


2022 ◽  
Vol 71 (2) ◽  
pp. 027301-027301
Author(s):  
Lin Yi-Ni ◽  
◽  
Ma Li ◽  
Yang Quan ◽  
Geng Song-Chao ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4223
Author(s):  
Xueyu Wang ◽  
Yong Zhong ◽  
Xiangya Luo ◽  
Haiqing Ren

Bamboo scrimber is one of the most popular engineering bamboo composites, owing to its excellent physical and mechanical properties. In order to investigate the influence of grain direction on the compression properties and failure mechanism of bamboo scrimber, the longitudinal, radial and tangential directions were selected. The results showed that the compressive load–displacement curves of bamboo scrimber in the longitudinal, tangential and radial directions contained elastic, yield and failure stages. The compressive strength and elastic modulus of the bamboo scrimber in the longitudinal direction were greater than those in the radial and tangential directions, and there were no significant differences between the radial and tangential specimens. The micro-fracture morphology shows that the parenchyma cells underwent brittle shear failure in all three directions, while the fiber failure of the longitudinal compressive specimens consisted of ductile fracture, and the tangential and radial compressive specimens exhibited brittle fracture. This is one of the reasons that the deformation of the specimens under longitudinal compression was greater than those under tangential and radial compression. The main failure mode of bamboo scrimber under longitudinal and radial compression was shear failure, and the main failure mode under tangential compression was interlayer separation failure. The reason for this difference was that during longitudinal and radial compression, the maximum strain occurred at the diagonal of the specimen, while during tangential compression, the maximum strain occurred at the bonding interface. This study can provide benefits for the rational design and safe application of bamboo scrimber in practical engineering.


2021 ◽  
pp. 0734242X2110570
Author(s):  
John Hartwell ◽  
M Sina Mousavi ◽  
Jongwan Eun ◽  
Shannon Bartelt-Hunt

A Municipal Solid Waste Borehole Assessment (MBA) was developed to assess in situ geotechnical properties of municipal solid waste (MSW) during the boring of gas extraction well construction. A Large-Diameter Borehole Caliper (LDBC) was lowered into the borehole to measure the diameter and record the condition of the wall by time-lapse video photography. The results indicated that the borehole experienced significant radial compression with depth following completion. Radial compressions amounted to approximately 7.5% at 9.14 m, 10% at 21.3 m and 11% at 27.4 m below ground surface. The bulk modulus was estimated by using the captured volumetric strains and reported lateral earth coefficients, and the results showed that it increases with increasing depth. For MSW, the bulk modulus increased up to 13.4 MPa in a linear trend with depth. The unit weights of MSW were obtained using three diameter readings from LDBC, auger barrel outside diameter and outer cutting bit outside diameter. The results showed that the diameter based on outer cutting bit yielded realistic unit weights (5.08–9.68 kN m–3) due to unrealistic calculated saturations by other two assumed diameters. The borehole assessment with LDBC was shown to be an efficient and valuable means for characterising MSW and effectively designing gas extraction wells. The research provided a means to assess the waste mass with accuracy at great depths by directly observing and measuring borehole condition.


2021 ◽  
Vol 3 ◽  
Author(s):  
Miljan Milosevic ◽  
Milos Anic ◽  
Dalibor Nikolic ◽  
Vladimir Geroski ◽  
Bogdan Milicevic ◽  
...  

Bioresorbable vascular scaffolds (BVS), made either from polymers or from metals, are promising materials for treating coronary artery disease through the processes of percutaneous transluminal coronary angioplasty. Despite the opinion that bioresorbable polymers are more promising for coronary stents, their long-term advantages over metallic alloys have not yet been demonstrated. The development of new polymer-based BVS or optimization of the existing ones requires engineers to perform many very expensive mechanical tests to identify optimal structural geometry and material characteristics. in silico mechanical testing opens the possibility for a fast and low-cost process of analysis of all the mechanical characteristics and also provides the possibility to compare two or more competing designs. In this study, we used a recently introduced material model of poly-l-lactic acid (PLLA) fully bioresorbable vascular scaffold and recently empowered numerical InSilc platform to perform in silico mechanicals tests of two different stent designs with different material and geometrical characteristics. The result of inflation, radial compression, three-point bending, and two-plate crush tests shows that numerical procedures with true experimental constitutive relationships could provide reliable conclusions and a significant contribution to the optimization and design of bioresorbable polymer-based stents.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1247
Author(s):  
Juliane Diehm ◽  
Verena Hackert ◽  
Matthias Franzreb

In the last decade, the fabrication of microfluidic chips was revolutionized by 3D printing. It is not only used for rapid prototyping of molds, but also for manufacturing of complex chips and even integrated active parts like pumps and valves, which are essential for many microfluidic applications. The manufacturing of multiport injection valves is of special interest for analytical microfluidic systems, as they can reduce the injection to detection dead volume and thus enhance the resolution and decrease the detection limit. Designs reported so far use radial compression of rotor and stator. However, commercially available nonprinted valves usually feature axial compression, as this allows for adjustable compression and the possibility to integrate additional sealing elements. In this paper, we transfer the axial approach to 3D-printed valves and compare two different printing techniques, as well as six different sealing configurations. The tightness of the system is evaluated with optical examination, weighing, and flow measurements. The developed system shows similar performance to commercial or other 3D-printed valves with no measurable leakage for the static case and leakages below 0.5% in the dynamic case, can be turned automatically with a stepper motor, is easy to scale up, and is transferable to other printing methods and materials without design changes.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1461
Author(s):  
Néstor J. Martínez-Hernández ◽  
Jorge Mas-Estellés ◽  
Lara Milián-Medina ◽  
Cristina Martínez-Ramos ◽  
José Cerón-Navarro ◽  
...  

The ideal tracheal substitute must have biomechanical properties comparable to the native trachea, but currently there is no standardised approach to evaluating these properties. Here we propose a novel method for evaluating and comparing the properties of tracheal substitutes, thus systematising both measurement and data curation. This system was tested by comparing native rabbit tracheas to frozen and decellularised specimens and determining the histological characteristics of those specimens. We performed radial compression tests on the anteroposterior tracheal axis and longitudinal axial tensile tests with the specimens anastomosed to the jaw connected to a measuring system. All calculations and results were adjusted according to tracheal size, always using variables relative to the tracheal dimensions, thus permitting comparison of different sized organs. The biomechanical properties of the decellularised specimens were only slightly reduced compared to controls and significant in regard to the maximum stress withstood in the longitudinal axis (−0.246 MPa CI [−0.248, −0.145] MPa) and the energy stored per volume unit (−0.124 mJ·mm−3 CI [−0.195, −0.055] mJ·mm−3). The proposed method is suitable for the systematic characterisation of the biomechanical properties of different tracheal substitutes, regardless of the size or nature of the substitute, thus allowing for direct comparisons.


Sign in / Sign up

Export Citation Format

Share Document