Distance function and cut loci on a complete Riemannian manifold

1979 ◽  
Vol 32 (1) ◽  
pp. 92-96 ◽  
Author(s):  
Franz-Erich Wolter
Author(s):  
Piermarco Cannarsa ◽  
Wei Cheng ◽  
Albert Fathi

AbstractIf $U:[0,+\infty [\times M$ U : [ 0 , + ∞ [ × M is a uniformly continuous viscosity solution of the evolution Hamilton-Jacobi equation $$ \partial _{t}U+ H(x,\partial _{x}U)=0, $$ ∂ t U + H ( x , ∂ x U ) = 0 , where $M$ M is a not necessarily compact manifold, and $H$ H is a Tonelli Hamiltonian, we prove the set $\Sigma (U)$ Σ ( U ) , of points in $]0,+\infty [\times M$ ] 0 , + ∞ [ × M where $U$ U is not differentiable, is locally contractible. Moreover, we study the homotopy type of $\Sigma (U)$ Σ ( U ) . We also give an application to the singularities of the distance function to a closed subset of a complete Riemannian manifold.


2018 ◽  
Vol 2020 (9) ◽  
pp. 2561-2587 ◽  
Author(s):  
Wencai Liu

Abstract In this paper, we consider the eigensolutions of $-\Delta u+ Vu=\lambda u$, where $\Delta $ is the Laplacian on a non-compact complete Riemannian manifold. We develop Kato’s methods on manifold and establish the growth of the eigensolutions as r goes to infinity based on the asymptotical behaviors of $\Delta r$ and V (x), where r = r(x) is the distance function on the manifold. As applications, we prove several criteria of absence of eigenvalues of Laplacian, including a new proof of the absence of eigenvalues embedded into the essential spectra of free Laplacian if the radial curvature of the manifold satisfies $ K_{\textrm{rad}}(r)= -1+\frac{o(1)}{r}$.


2008 ◽  
Vol 78 (2) ◽  
pp. 285-291 ◽  
Author(s):  
ALBERT BORBÉLY

AbstractLet N be a complete Riemannian manifold isometrically immersed into a Hadamard manifold M. We show that the immersion cannot be bounded if the mean curvature of the immersed manifold is small compared with the curvature of M and the Laplacian of the distance function on N grows at most linearly. The latter condition is satisfied if the Ricci curvature of N does not approach $-\infty $ too fast. The main tool in the proof is a modification of Yau’s maximum principle.


2012 ◽  
Vol 23 (04) ◽  
pp. 1250009 ◽  
Author(s):  
JEONGWOOK CHANG ◽  
JINHO LEE

We derive Harnack-type inequalities for non-negative solutions of the porous medium equation on a complete Riemannian manifold with non-negative Ricci curvature. Along with gradient estimates, reparametrization of a geodesic and time rescaling of a solution are key tools to get the results.


1994 ◽  
Vol 36 (1) ◽  
pp. 77-80 ◽  
Author(s):  
Leung-Fu Cheung ◽  
Pui-Fai Leung

For each p ∈ [2, ∞)a p-harmonic map f:Mm→Nn is a critical point of the p-energy functionalwhere Mm is a compact and Nn a complete Riemannian manifold of dimensions m and n respectively. In a recent paper [3], Takeuchi has proved that for a certain class of simply-connected δ-pinched Nn and certain type of hypersurface Nn in ℝn+1, the only stable p-harmonic maps for any compact Mm are the constant maps. Our purpose in this note is to establish the following theorem which complements Takeuchi's results.


1998 ◽  
Vol 151 ◽  
pp. 25-36 ◽  
Author(s):  
Kensho Takegoshi

Abstract.A generalized maximum principle on a complete Riemannian manifold (M, g) is shown under a certain volume growth condition of (M, g) and its geometric applications are given.


2001 ◽  
Vol 162 ◽  
pp. 149-167
Author(s):  
Yong Hah Lee

In this paper, we prove that if a complete Riemannian manifold M has finitely many ends, each of which is a Harnack end, then the set of all energy finite bounded A-harmonic functions on M is one to one corresponding to Rl, where A is a nonlinear elliptic operator of type p on M and l is the number of p-nonparabolic ends of M. We also prove that if a complete Riemannian manifold M is roughly isometric to a complete Riemannian manifold with finitely many ends, each of which satisfies the volume doubling condition, the Poincaré inequality and the finite covering condition near infinity, then the set of all energy finite bounded A-harmonic functions on M is finite dimensional. This result generalizes those of Yau, of Donnelly, of Grigor’yan, of Li and Tam, of Holopainen, and of Kim and the present author, but with a barrier argument at infinity that the peculiarity of nonlinearity demands.


Sign in / Sign up

Export Citation Format

Share Document