Boundary-value problem for the two-dimensional elliptic sine-Gordon equation and its application to the theory of the stationary Josephson effect

1994 ◽  
Vol 68 (2) ◽  
pp. 197-201 ◽  
Author(s):  
E. S. Gutshabash ◽  
V. D. Lipovskii
2021 ◽  
Vol 102 (2) ◽  
pp. 142-153
Author(s):  
O. Yildirim ◽  
◽  
S. Caglak ◽  

In general, due to the nature of the Lie group theory, symmetry analysis is applied to single equations rather than boundary value problems. In this paper boundary value problems for the sine-Gordon equations under the group of Lie point symmetries are obtained in both differential and difference forms. The invariance conditions for the boundary value problems and their solutions are obtained. The invariant discretization of the difference problem corresponding to the boundary value problem for sine-Gordon equation is studied. In the differential case an unbounded domain is considered and in the difference case a lattice with points lying in the plane and stretching in all directions with no boundaries is considered.


2020 ◽  
Vol 98 (2) ◽  
pp. 100-109
Author(s):  
Minzilya T. Kosmakova ◽  
◽  
Valery G. Romanovski ◽  
Dana M. Akhmanova ◽  
Zhanar M. Tuleutaeva ◽  
...  

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
S. Y. Lou ◽  
X. B. Hu ◽  
Q. P. Liu

Abstract It is shown that the relativistic invariance plays a key role in the study of integrable systems. Using the relativistically invariant sine-Gordon equation, the Tzitzeica equation, the Toda fields and the second heavenly equation as dual relations, some continuous and discrete integrable positive hierarchies such as the potential modified Korteweg-de Vries hierarchy, the potential Fordy-Gibbons hierarchies, the potential dispersionless Kadomtsev-Petviashvili-like (dKPL) hierarchy, the differential-difference dKPL hierarchy and the second heavenly hierarchies are converted to the integrable negative hierarchies including the sG hierarchy and the Tzitzeica hierarchy, the two-dimensional dispersionless Toda hierarchy, the two-dimensional Toda hierarchies and negative heavenly hierarchy. In (1+1)-dimensional cases the positive/negative hierarchy dualities are guaranteed by the dualities between the recursion operators and their inverses. In (2+1)-dimensional cases, the positive/negative hierarchy dualities are explicitly shown by using the formal series symmetry approach, the mastersymmetry method and the relativistic invariance of the duality relations. For the 4-dimensional heavenly system, the duality problem is studied firstly by formal series symmetry approach. Two elegant commuting recursion operators of the heavenly equation appear naturally from the formal series symmetry approach so that the duality problem can also be studied by means of the recursion operators.


Sign in / Sign up

Export Citation Format

Share Document