Benzenoid graphs with equal maximum eigenvalues

1994 ◽  
Vol 15 (1) ◽  
pp. 407-407
Author(s):  
Zlatko Mihalić ◽  
Darko Babić ◽  
Nenad Trinajstić
Keyword(s):  
1978 ◽  
Vol 27 (2) ◽  
pp. 181-189 ◽  
Author(s):  
E. Hind

ABSTRACT1. Eight-one British Friesian and 44 Jersey steers was slaughtered at 1. 12, 24, 48 or 72 weeks of age. Those aged 24 weeks and over were reared on a standard complete diet offered ad libitum, and individual food intakes were recorded until slaughter when carcasses were dissected on an anatomical basis.2. From 1 to 72 weeks British Friesians were on average 50% heavier than Jerseys and consumed 47% more food. Total lean tissue (L) increased 11-fold to 137 + 6·4 kg in the British Friesians and 16-fold to 84 ± 4·7 kg in the Jersey. L as a percentage of live weight rose to 32% ±0·6 in the British Friesians and to 29% ±0·8 in the Jerseys. Breeds did not differ significantly in average efficiency of growth of lean tissue in any period.3. From 24 to 72 weeks, an allometric relationship held between L and total food consumed postnatally, F. The two breeds had the same allometric coefficient of 0·61. Current efficiency, 0·61 L/F, was thus proportional to cumulated efficiency, L/F. Allowance was made for the prenatal input, Fo, required to produce the newborn calf. An optimum slaughter point at which overall efficiency, L/(F+F0), reached a maximum occurred in each breed when postnatal input was 58% higher than prenatal input (F = 1·58F0). When the breeds had equal maximum efficiency the British Friesian: Jersey ratios for prenatal input, total food consumed and total lean produced were all 2·6:1.


2017 ◽  
Vol 118 (3) ◽  
pp. 1903-1913 ◽  
Author(s):  
Amy M. Ni ◽  
John H. R. Maunsell

Spatial attention improves perception of attended parts of a scene, a behavioral enhancement accompanied by modulations of neuronal firing rates. These modulations vary in size across neurons in the same brain area. Models of normalization explain much of this variance in attention modulation with differences in tuned normalization across neurons (Lee J, Maunsell JHR. PLoS One 4: e4651, 2009; Ni AM, Ray S, Maunsell JHR. Neuron 73: 803–813, 2012). However, recent studies suggest that normalization tuning varies with spatial location both across and within neurons (Ruff DA, Alberts JJ, Cohen MR. J Neurophysiol 116: 1375–1386, 2016; Verhoef BE, Maunsell JHR. eLife 5: e17256, 2016). Here we show directly that attention modulation and normalization tuning do in fact covary within individual neurons, in addition to across neurons as previously demonstrated. We recorded the activity of isolated neurons in the middle temporal area of two rhesus monkeys as they performed a change-detection task that controlled the focus of spatial attention. Using the same two drifting Gabor stimuli and the same two receptive field locations for each neuron, we found that switching which stimulus was presented at which location affected both attention modulation and normalization in a correlated way within neurons. We present an equal-maximum-suppression spatially tuned normalization model that explains this covariance both across and within neurons: each stimulus generates equally strong suppression of its own excitatory drive, but its suppression of distant stimuli is typically less. This new model specifies how the tuned normalization associated with each stimulus location varies across space both within and across neurons, changing our understanding of the normalization mechanism and how attention modulations depend on this mechanism. NEW & NOTEWORTHY Tuned normalization studies have demonstrated that the variance in attention modulation size seen across neurons from the same cortical area can be largely explained by between-neuron differences in normalization strength. Here we demonstrate that attention modulation size varies within neurons as well and that this variance is largely explained by within-neuron differences in normalization strength. We provide a new spatially tuned normalization model that explains this broad range of observed normalization and attention effects.


2020 ◽  
Vol 1529 ◽  
pp. 042096
Author(s):  
M. Irwanto ◽  
N. Gomesh ◽  
B. Ismail ◽  
H. Alam ◽  
M. Masri ◽  
...  

2018 ◽  
Vol 68 (5) ◽  
pp. 451-459
Author(s):  
Amit Kumar

A modified continuous-time pursuit-evasion game with multiple pursuers and a single evader is studied. The game has been played in an obstacle-free convex environment which consists an exit gate through which the evader may escape. The geometry of the convex is unknown to all players except pursuers know the location of the exit gate and they can communicate with each other. All players have equal maximum velocities and identical sensing range. An evader is navigating inside the environment and seeking the exit gate to win the game. A novel sweep-pursuit-capture strategy for the pursuers to search and capture the evader under some necessary and sufficient conditions is presented. We also show that three pursuers are sufficient to finish the operation successfully. Non-holonomic wheeled mobile robots of the same configurations have been used as the pursuers and the evader. Simulation studies demonstrate the performance of the proposed strategy in terms of interception time and the distance traveled by the players. 


2021 ◽  
Vol 11 (5) ◽  
pp. 2293
Author(s):  
Kevin Klarmann ◽  
Malte Thielmann ◽  
Walter Schumacher

This paper presents the differences and similarities of ΔΣ-PWM as a hysteresis-based PWM scheme with direct torque control (DTC) using simulation models. The variable switching frequency caused by the hysteresis element is examined with regard to its instantaneous values. The comparison is based on an equal maximum switching frequency as a design criterion. With this first assumption, the variation of the instantaneous switching frequency is higher when using DTC because of the temporary prioritization of one inverter leg. Besides the lower variation, ΔΣ-PWM shows a higher average switching frequency. Because the switching frequency is related to the torque ripple, the usage of ΔΣ-PWM results in a smaller torque ripple. Due to the dependence of torque ripple on switching frequency, a second comparison is carried out based on the same average switching frequency. In this comparison the ΔΣ-PWM shows higher torque ripple than DTC.


Sign in / Sign up

Export Citation Format

Share Document