Heat transfer by radiation in rotary kilns

Refractories ◽  
1978 ◽  
Vol 19 (1-2) ◽  
pp. 17-19
Author(s):  
G. A. Ketslakh ◽  
I. P. Tsibin
1967 ◽  
Vol 31 (10) ◽  
pp. 988-994,a1
Author(s):  
Makoto Nishimura ◽  
Masanobu Hasatani ◽  
Sachio Sugiyama

Author(s):  
Atinder Pal Singh ◽  
P.S. Ghoshdastidar

Abstract The paper presents computer simulation of heat transfer in alumina and cement rotary kilns. The model incorporates radiation exchange among solids, wall and gas, convective heat transfer from the gas to the wall and the solids, contact heat transfer between the covered wall and the solids, and heat loss to the surroundings as well as chemical reactions. The mass and energy balances of gas and solids have been performed in each axial segment of the kilns. The energy equation for the wall is solved numerically by the finite-difference method. The dust entrainment in the gas is also accounted for. The solution marches from the solids inlet to the solids outlet. The kiln length predicted by the present model of the alumina kiln is 77.5 m as compared to 80 m of the actual kiln of Manitius et al. (1974, Manitius, A., Kurcyusz, E., and Kawecki, W., “Mathematical Model of an Aluminium Oxide Rotary Kiln,” Ind. Eng. Chem. Process Des. Dev., 13 (2), pp. 132-142). In the second part, heat transfer in a dry process cement rotary kiln is modelled. The melting of the solids and coating formation on the inner wall of the kiln are also taken into account. A detailed parametric study lent a good physical insight into axial solids and gas temperature distributions, and axial variation of chemical composition of the products in both the kilns. The effect of kiln rotational speed on the cement kiln wall temperature distribution is also reported.


2015 ◽  
Vol 60 (1) ◽  
pp. 209-213
Author(s):  
M. Rywotycki ◽  
Z. Malinowski ◽  
K. Miłkowska-Piszczek ◽  
A. Gołdasz ◽  
B. Hadała

AbstractThe paper presents the results of research concerning the influence of radiative heat transfer on the strand and mould interface. The four models for determining the heat transfer boundary conditions within the primary cooling zone for the continuous casting process of steel have been presented. A cast slab - with dimensions of 1280×220 mm - has been analysed. Models describing the heat transfer by radiation have been specified and applied in the numerical calculations. The problem has been solved by applying the finite element method and the self-developed software. The simulation results, along with their analysis, have been presented. The developed models have been verified based on the data obtained from the measurements at the industrial facility.


2001 ◽  
Vol 2001 (0) ◽  
pp. 411-412
Author(s):  
Yasuyuki IMAI ◽  
Tomoji TAKAMASA ◽  
Tatsuya HAZUKU ◽  
Koji OKAMOTO ◽  
Kaichiro MISHIMA ◽  
...  

2018 ◽  
Vol 91 ◽  
pp. 197-213 ◽  
Author(s):  
Alex Stéphane Bongo Njeng ◽  
Stéphane Vitu ◽  
Marc Clausse ◽  
Jean-Louis Dirion ◽  
Marie Debacq

Author(s):  
Amit Ravindra Amritkar ◽  
Danesh Tafti ◽  
Surya Deb

Rotary furnaces have multiple applications including calcination, pyrolysis, carburization, drying, etc. Heat transfer through granular media in rotary kilns is a complex phenomenon and plays an important role in the thermal efficiency of rotary furnaces. Thorough mixing of particles in a rotary kiln determines the bed temperature uniformity. Hence it is essential to understand the particle scale heat transfer modes through which the granular media temperature changes. In this study, numerical simulations are performed using coupled Discrete Element Method (DEM) and Computational Fluid Dynamics (CFD) to analyze heat transfer in a non-reacting rotary kiln. The microscopic models of particle-particle, particle-fluid, particle-surface and fluid-surface heat transfer are used in the analysis. The heat transfer simulations are validated against experimental data. The effect of particle cascading on the bed temperature is measured and contributions from various modes of particle scale heat transfer mechanisms are reported. Particles are heated near the rotary kiln walls by convection heat transfer as they pass through the thermal boundary layer of the heated fluid. These particles are transported to the center of the kiln where they transfer heat to the cooler particles in the core of the kiln and back to the cooler fluid at the center of the kiln. It is found that 90% of the heat transferred to particles from the kiln walls is a result of convection heat transfer, whereas only 10% of the total heat transfer is due to conduction from the kiln walls.


Sign in / Sign up

Export Citation Format

Share Document