On the upper critical dimension of lattice trees and lattice animals

1990 ◽  
Vol 59 (5-6) ◽  
pp. 1469-1510 ◽  
Author(s):  
Takashi Hara ◽  
Gordon Slade
2021 ◽  
Vol 185 (2) ◽  
Author(s):  
Robert Fitzner ◽  
Remco van der Hofstad

AbstractWe study lattice trees (LTs) and animals (LAs) on the nearest-neighbor lattice $${\mathbb {Z}}^d$$ Z d in high dimensions. We prove that LTs and LAs display mean-field behavior above dimension $$16$$ 16 and $$17$$ 17 , respectively. Such results have previously been obtained by Hara and Slade in sufficiently high dimensions. The dimension above which their results apply was not yet specified. We rely on the non-backtracking lace expansion (NoBLE) method that we have recently developed. The NoBLE makes use of an alternative lace expansion for LAs and LTs that perturbs around non-backtracking random walk rather than around simple random walk, leading to smaller corrections. The NoBLE method then provides a careful computational analysis that improves the dimension above which the result applies. Universality arguments predict that the upper critical dimension, above which our results apply, is equal to $$d_c=8$$ d c = 8 for both models, as is known for sufficiently spread-out models by the results of Hara and Slade mentioned earlier. The main ingredients in this paper are (a) a derivation of a non-backtracking lace expansion for the LT and LA two-point functions; (b) bounds on the non-backtracking lace-expansion coefficients, thus showing that our general NoBLE methodology can be applied; and (c) sharp numerical bounds on the coefficients. Our proof is complemented by a computer-assisted numerical analysis that verifies that the necessary bounds used in the NoBLE are satisfied.


1990 ◽  
Vol 04 (04) ◽  
pp. 267-276 ◽  
Author(s):  
P. D. GUJRATI

We investigate a field theory of a grand-canonical ensemble of branched polymers and lattice animals and show that the upper critical dimension for thermal phase transitions is du = 4. The transition in the dilute limit is first-order and there is no dimensional reduction. We suggest that the previous results in this limit correspond to a spinodal singularity and not to a physical singularity as the associated percolative transition is preempted by the first-order thermal transition.


2011 ◽  
Vol 83 (2) ◽  
pp. 245-249 ◽  
Author(s):  
C. von Ferber ◽  
D. Foster ◽  
H. P. Hsu ◽  
R. Kenna

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Marco Panero ◽  
Antonio Smecca

Abstract We present a high-precision Monte Carlo study of the classical Heisenberg model in four dimensions. We investigate the properties of monopole-like topological excitations that are enforced in the broken-symmetry phase by imposing suitable boundary conditions. We show that the corresponding magnetization and energy-density profiles are accurately predicted by previous analytical calculations derived in quantum field theory, while the scaling of the low-energy parameters of this description questions an interpretation in terms of particle excitations. We discuss the relevance of these findings and their possible experimental applications in condensed-matter physics.


Author(s):  
Tom Hutchcroft

AbstractWe study long-range Bernoulli percolation on $${\mathbb {Z}}^d$$ Z d in which each two vertices x and y are connected by an edge with probability $$1-\exp (-\beta \Vert x-y\Vert ^{-d-\alpha })$$ 1 - exp ( - β ‖ x - y ‖ - d - α ) . It is a theorem of Noam Berger (Commun. Math. Phys., 2002) that if $$0<\alpha <d$$ 0 < α < d then there is no infinite cluster at the critical parameter $$\beta _c$$ β c . We give a new, quantitative proof of this theorem establishing the power-law upper bound $$\begin{aligned} {\mathbf {P}}_{\beta _c}\bigl (|K|\ge n\bigr ) \le C n^{-(d-\alpha )/(2d+\alpha )} \end{aligned}$$ P β c ( | K | ≥ n ) ≤ C n - ( d - α ) / ( 2 d + α ) for every $$n\ge 1$$ n ≥ 1 , where K is the cluster of the origin. We believe that this is the first rigorous power-law upper bound for a Bernoulli percolation model that is neither planar nor expected to exhibit mean-field critical behaviour. As part of the proof, we establish a universal inequality implying that the maximum size of a cluster in percolation on any finite graph is of the same order as its mean with high probability. We apply this inequality to derive a new rigorous hyperscaling inequality $$(2-\eta )(\delta +1)\le d(\delta -1)$$ ( 2 - η ) ( δ + 1 ) ≤ d ( δ - 1 ) relating the cluster-volume exponent $$\delta $$ δ and two-point function exponent $$\eta $$ η .


1984 ◽  
Vol 55 (6) ◽  
pp. 1646-1648 ◽  
Author(s):  
Susan R. McKay ◽  
A. Nihat Berker

2021 ◽  
pp. 1-12
Author(s):  
Andrey Viktorovich Podlazov

I investigate the nature of the upper critical dimension for isotropic conservative sandpile models and calculate the emerging logarithmic corrections to power-law distributions. I check the results experimentally using the case of Manna model with the theoretical solution known for all statement starting from the two-dimensional one. In addition, based on this solution, I construct a non-trivial super-universal indicator for this model. It characterizes the distribution of avalanches by time the border of their region needs to pass its width.


Sign in / Sign up

Export Citation Format

Share Document