Diffuse double layer interaction between two parallel plates with constant surface charge density in an electrolyte solution IV. Numerical calculation of the interaction between similar plates using the non-linear Poisson-Boltzmann equation

1976 ◽  
Vol 254 (5) ◽  
pp. 484-491 ◽  
Author(s):  
Hiroyuki Ohshima

1981 ◽  
Vol 59 (13) ◽  
pp. 1860-1864 ◽  
Author(s):  
Joseph E. Ledbetter ◽  
Thomas L. Croxton ◽  
Donald A. McQuarrie

The Poisson–Boltzmann equation for two large charged spheres immersed in an ionic solution with either constant surface charge density or constant surface potential is solved numerically. The repulsion between the spheres is calculated from the electrostatic potential in the double layer surrounding the spheres. Good agreement between this numerically calculated force and the force computed using the Derjaguin formula for spheres with constant surface charge density is found at small separations of the spheres.



2020 ◽  
Vol 22 (35) ◽  
pp. 20123-20142
Author(s):  
Hadi Saboorian-Jooybari ◽  
Zhangxin Chen

This research work is directed at development of accurate physics-based formulas for quantification of curvature-dependence of surface potential, surface charge density, and total surface charge for cylindrical and spherical charged particles immersed in a symmetrical electrolyte solution.



Sign in / Sign up

Export Citation Format

Share Document