Coupling proximal methods and variational convergence

1993 ◽  
Vol 38 (3) ◽  
pp. 269-280 ◽  
Author(s):  
Abdellatif Moudafi
2012 ◽  
Vol 2012 ◽  
pp. 1-9
Author(s):  
Muhammad Aslam Noor ◽  
Zhenyu Huang

It is well known that the mixed variational inequalities are equivalent to the fixed point problem. We use this alternative equivalent formulation to suggest some new proximal point methods for solving the mixed variational inequalities. These new methods include the explicit, the implicit, and the extragradient method as special cases. The convergence analysis of these new methods is considered under some suitable conditions. Our method of constructing these iterative methods is very simple. Results proved in this paper may stimulate further research in this direction.


2017 ◽  
Vol 20 (K2) ◽  
pp. 107-116
Author(s):  
Diem Thi Hong Huynh

We show first the definition of variational convergence of unifunctions and their basic variational properties. In the next section, we extend this variational convergence definition in case the functions which are defined on product two sets (bifunctions or bicomponent functions). We present the definition of variational convergence of bifunctions, icluding epi/hypo convergence, minsuplop convergnece and maxinf-lop convergence, defined on metric spaces. Its variational properties are also considered. In this paper, we concern on the properties of epi/hypo convergence to apply these results on optimization proplems in two last sections. Next we move on to the main results that are approximations of typical and important optimization related problems on metric space in terms of the types of variational convergence are equilibrium problems, and multiobjective optimization. When we applied to the finite dimensional case, some of our results improve known one.


2016 ◽  
Vol 21 (4) ◽  
pp. 478-501 ◽  
Author(s):  
Dang Van Hieu

In this paper, we introduce two parallel extragradient-proximal methods for solving split equilibrium problems. The algorithms combine the extragradient method, the proximal method and the shrinking projection method. The weak and strong convergence theorems for iterative sequences generated by the algorithms are established under widely used assumptions for equilibrium bifunctions. We also present an application to split variational inequality problems and a numerical example to illustrate the convergence of the proposed algorithms.


2004 ◽  
Vol 43 (2) ◽  
pp. 731-742 ◽  
Author(s):  
Patrick L. Combettes ◽  
Teemu Pennanen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document