Solid-liquid phase transition of tin particles observed by UHV high resolution transmission electron microscopy: pseudo-crystalline phase

1993 ◽  
Vol 27 (3) ◽  
pp. 287-294 ◽  
Author(s):  
Y. Oshima ◽  
K. Takayanagi
2001 ◽  
Vol 7 (S2) ◽  
pp. 1258-1259
Author(s):  
K. Mitsuishi ◽  
C.W. Allen ◽  
R. C. Birtcher ◽  
U. Dahmen

It is well known that rare-gas Xe atoms embedded in a crystalline Al matrix form precipitates having cuboctahedral shapes bounded by ﹛100﹜ and ﹛111﹜ surfaces1. Below a certain critical size, Xe precipitates are observed to be solid, even at room temperature. This is a result of the Laplace pressure, which is inversely proportional to the radius of the precipitate. Donnelly et al. reported that the critical size of Xe solidification was expected at 4nm in radius at room temperature.Using high-resolution transmission electron microscopy, it is possible to observe these particles directly. It has been demonstrated that under off-Bragg conditions, the Al lattice fringes are minimized whereas the Xe lattice fringes are maximized. From such observations, it was confirmed experimentally that the average critical size of Xe precipitates is around 4 to 5nm in radius. However, much larger Xe precipitates are sometime observed to remain solid.


Author(s):  
Tai D. Nguyen ◽  
Ronald Gronsky ◽  
Jeffrey B. Kortright

High-resolution transmission electron microscopy has proven to be very useful in direct detection of crystalline phases that exist over extremely small volumes, yielding information about structure, orientation, and, under appropriate circumstances, composition. In this paper, we report the detection of a crystalline phase in the tungsten-rich layer of an annealed 7 nm-period tungsten-carbon multilayer produced at the Center for X-Ray Optics at the Lawrence Berkeley Laboratory.The multilayers were prepared by dc magnetron sputtering at floating temperature. The argon sputter gas pressure was 0.0020 torr. Different techniques were employed to produce cross-section and plan-view samples for TEM. For cross-section samples, 70 bilayers of W and C were sputtered on semiconductor-grade Si (111) wafers. For plan-view samples, the substrates on which the multilayer was grown consisted of 3 mm-diameter 300-mesh copper microscope grids, mounted on glass slide with Crystalbond® vacuum adhesive. After a deposition of 4 bilayers of W-C, keeping the same sputtering parameters as those of the Si substrates to guarantee the same layer thicknesses, the glass slide was soaked in acetone to disolve the Crystalbond®, leaving the multilayer spanning the holes of the copper grids. Both the Si-substrate and copper-grid samples were annealed at 500°C for 4 hours under vacuum of 10−6 torr. The annealed Si-substrate sample was then prepared for cross-section by mechanical grinding, and ion milling in a cold stage at 5kV. The cross-section sample was studied in a JEOL JEM 200CX with ultrahigh resolution goniometer, with the eletron beam parallel to the [112] of the Si substrate. The plan-view sample was studied in a Philips 301 operating at 100kV.


Author(s):  
Takashi Ishiguro ◽  
Hiroshi Sato

Phase transitions of lT-TaS2 both on cooling from the incommensurate (IC) phase and on heating from the commensurate (C) phase are investigated by high resolution (HR) transmission electron microscopy because phase transitions are strongly hysteretic. The phases which had been identified were Normal(T>543K,no modurated wave, the Cdl2 type of structure, ao=0.336nm co=0.590nm), IC(354K< T< 543K), NC(non-commensurate or nearly commensurate, 185K<T<353K) and C(T<K). On heating from the C phase, the new phase called the T phase (nearly commensurate triclinic ) appears between 200K and 280K, and that has the discommensuration (DC) network. The HR observations at low temperature reveal both the three dimentional structure of the C phase and the DC network structure of the T phase.On cooling from the IC phase, the structure of the NC phase is essentially incommensurate in the basal plane and a continuous rotation of the moduration direction towards the C phase occurs.


Sign in / Sign up

Export Citation Format

Share Document