Insights into the Formation of Al–Cu Intermetallic Compounds During the Solid–Liquid Reaction by High-Resolution Transmission Electron Microscopy

Author(s):  
Jie Chen ◽  
Yongqiong Ren ◽  
Bingge Zhao
Author(s):  
M.J. Mills

The fine structure of dislocations plays a critical role in determining the macroscopic mechanical behavior Intermetallic compounds. Many of the technologically important characteristics of these compounds, an example their strength at high temperatures, appear to be determined by intricate details of dislocation stucture at the atomic level. High resolution transmission electron microscopy (HREM) offers the etential to obtain structural information at this level by observing these line defects in an "end-on" configuration.Samples of HREM images of several important dislocation types in Ni3Al and TiAl are shown in Figures through 3. Each of these particular dislocation types (i.e. Burgers vectors and line directions) tend to be longly favored in these compounds, indicating that along these line directions the dislocations are likely have either low mobility or low energy.


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document