Use of aromatic polycyclic hydrocarbons and [Ru(bpy)3Cl2·(OAC)n] for the chemical redox activation of chemiluminescence in the oxidation of organoaluminum compounds by XeF2

Author(s):  
R. G. Bulgakov ◽  
V. N. Yakovlev ◽  
G. A. Tolstikov ◽  
V. P. Kazakov
2015 ◽  
Vol 15 (2) ◽  
pp. 136-162 ◽  
Author(s):  
Yen de Paiva ◽  
Fabricia Rocha Ferreira ◽  
Thaissa Silva ◽  
Eric Labbe ◽  
Olivier Buriez ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 678
Author(s):  
Martin Jabůrek ◽  
Pavla Průchová ◽  
Blanka Holendová ◽  
Alexander Galkin ◽  
Petr Ježek

Patatin-like phospholipase domain-containing protein PNPLA8, also termed Ca2+-independent phospholipase A2γ (iPLA2γ), is addressed to the mitochondrial matrix (or peroxisomes), where it may manifest its unique activity to cleave phospholipid side-chains from both sn-1 and sn-2 positions, consequently releasing either saturated or unsaturated fatty acids (FAs), including oxidized FAs. Moreover, iPLA2γ is directly stimulated by H2O2 and, hence, is activated by redox signaling or oxidative stress. This redox activation permits the antioxidant synergy with mitochondrial uncoupling proteins (UCPs) or other SLC25 mitochondrial carrier family members by FA-mediated protonophoretic activity, termed mild uncoupling, that leads to diminishing of mitochondrial superoxide formation. This mechanism allows for the maintenance of the steady-state redox status of the cell. Besides the antioxidant role, we review the relations of iPLA2γ to lipid peroxidation since iPLA2γ is alternatively activated by cardiolipin hydroperoxides and hypothetically by structural alterations of lipid bilayer due to lipid peroxidation. Other iPLA2γ roles include the remodeling of mitochondrial (or peroxisomal) membranes and the generation of specific lipid second messengers. Thus, for example, during FA β-oxidation in pancreatic β-cells, H2O2-activated iPLA2γ supplies the GPR40 metabotropic FA receptor to amplify FA-stimulated insulin secretion. Cytoprotective roles of iPLA2γ in the heart and brain are also discussed.


Catalysts ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 39
Author(s):  
Lyudmila V. Parfenova ◽  
Pavel V. Kovyazin ◽  
Almira Kh. Bikmeeva ◽  
Eldar R. Palatov

The activity and chemoselectivity of the Cp2ZrCl2-XAlBui2 (X = H, Bui) and [Cp2ZrH2]2-ClAlEt2 catalytic systems activated by (Ph3C)[B(C6F5)4] or B(C6F5)3 were studied in reactions with 1-hexene. The activation of the systems by B(C6F5)3 resulted in the selective formation of head-to-tail alkene dimers in up to 93% yields. NMR studies of the reactions of Zr complexes with organoaluminum compounds (OACs) and boron activators showed the formation of Zr,Zr- and Zr,Al-hydride intermediates, for which diffusion coefficients, hydrodynamic radii, and volumes were estimated using the diffusion ordered spectroscopy DOSY. Bis-zirconium hydride clusters of type x[Cp2ZrH2∙Cp2ZrHCl∙ClAlR2]∙yRnAl(C6F5)3−n were found to be the key intermediates of alkene dimerization, whereas cationic Zr,Al-hydrides led to the formation of oligomers.


2021 ◽  
Author(s):  
Takumi Nakazato ◽  
Haruka Takekoshi ◽  
Takahiro Sakurai ◽  
Hiroshi Shinokubo ◽  
Yoshihiro Miyake

1984 ◽  
Vol 22 (3) ◽  
pp. 321-328 ◽  
Author(s):  
Alan Hewer ◽  
David H. Phillips ◽  
Ruth M. Hodgson ◽  
Philip L. Grover

Sign in / Sign up

Export Citation Format

Share Document