Protein sequencing strategies designed for DNA cloning

1992 ◽  
Vol 11 (4) ◽  
pp. 401-402
Author(s):  
G. Houen
1970 ◽  
Vol 3 (3) ◽  
pp. 327-375 ◽  
Author(s):  
David E. Kohne

A great deal of information about evolutionary events and processes has been inferred from careful studies of fossil records. Other forms of evidence have also contributed greatly to the understanding of evolution. Comparative biochemistry (Florkin, 1949), immunology (Boyden, 1942), protein sequencing (Dayoff, 1969; Anfinsen, 1959), and early DNA studies (McCarthy & Bolton, 1963; Schildkraut, Marmur & Doty, 1961) have for the most part corroborated earlier evolutionary findings, and at the same time provided new understanding of molecular processes in evolution. Of these approaches the comparison of DNA seems most promising since a relatively precise quantitative comparison can be made of all of the genetic material of different species.


BioTechniques ◽  
1999 ◽  
Vol 27 (6) ◽  
pp. 1240-1244 ◽  
Author(s):  
Hung Tseng

2000 ◽  
Vol 164 (3) ◽  
pp. 1442-1450 ◽  
Author(s):  
Martin van Eijk ◽  
Henk P. Haagsman ◽  
Thomas Skinner ◽  
Alan Archibold ◽  
Kenneth B. M. Reid ◽  
...  

2003 ◽  
Vol 185 (15) ◽  
pp. 4442-4449 ◽  
Author(s):  
Gregory M. Cook ◽  
Stefanie Keis ◽  
Hugh W. Morgan ◽  
Christoph von Ballmoos ◽  
Ulrich Matthey ◽  
...  

ABSTRACT We describe here purification and biochemical characterization of the F1Fo-ATP synthase from the thermoalkaliphilic organism Bacillus sp. strain TA2.A1. The purified enzyme produced the typical subunit pattern of an F1Fo-ATP synthase on a sodium dodecyl sulfate-polyacrylamide gel, with F1 subunits α, β, γ, δ, and ε and Fo subunits a, b, and c. The subunits were identified by N-terminal protein sequencing and mass spectroscopy. A notable feature of the ATP synthase from strain TA2.A1 was its specific blockage in ATP hydrolysis activity. ATPase activity was unmasked by using the detergent lauryldimethylamine oxide (LDAO), which activated ATP hydrolysis >15-fold. This activation was the same for either the F1Fo holoenzyme or the isolated F1 moiety, and therefore latent ATP hydrolysis activity is an intrinsic property of F1. After reconstitution into proteoliposomes, the enzyme catalyzed ATP synthesis driven by an artificially induced transmembrane electrical potential (Δψ). A transmembrane proton gradient or sodium ion gradient in the absence of Δψ was not sufficient to drive ATP synthesis. ATP synthesis was eliminated by the electrogenic protonophore carbonyl cyanide m-chlorophenylhydrazone, while the electroneutral Na+/H+ antiporter monensin had no effect. Neither ATP synthesis nor ATP hydrolysis was stimulated by Na+ ions, suggesting that protons are the coupling ions of the ATP synthase from strain TA2.A1, as documented previously for mesophilic alkaliphilic Bacillus species. The ATP synthase was specifically modified at its c subunits by N,N′-dicyclohexylcarbodiimide, and this modification inhibited ATP synthesis.


Sign in / Sign up

Export Citation Format

Share Document