Determination of the lateral pressure from a noncohesive medium by considering the wall displacements and the failure wedge

1971 ◽  
Vol 8 (4) ◽  
pp. 229-233
Author(s):  
N. K. Snitko
1974 ◽  
Vol 8 (8) ◽  
pp. 496-499
Author(s):  
V. A. Belousov ◽  
�. �. Kol'man-Ivanov ◽  
I. E. Semenov-Ezhov ◽  
N. A. Stepanov ◽  
I. P. Sukharev

2019 ◽  
Vol 2 (2) ◽  
pp. 61-77
Author(s):  
Puskar R. Pokhrel ◽  
Bhadra Man Tuladhar

In this paper, we present simple and exact eigenvalues for both the solid- and fluid-phases of the real two-phase general model developed by Pudasaini (2012); we call these phase-eigenvalues, the solid- phase-eigenvalues and the fluid-phase-eigenvalues. Results are compared by applying the derived phase- eigenvalues that incorporate the phase-interactions in the two-phase debris movements against the simple and classical solid and fluid eigenvalues without any phase interaction. We have constructed several different set of eigenvalues including the coupled phase eigenvalues by using rational factorization method. At first, we consider for general debris height; factorizing the solid and fluid lateral pressure contributions by considering the negligible pressure gradient; negligible solid lateral pressure; negligible fluid lateral pressure; negligible solid and fluid lateral pressure. Secondly, for a thin debris ow height, we also construct the fourth set of eigenvalues in three different cases. These phase-eigenvalues incorporate strong interaction between the solid and fluid dynamics. The simulation results are produced by taking all these different sets of coupled phase-eigenvalues and are compared with the classical uncoupled set of solid and fluid eigenvalues. The results indicate the importance of phase-eigenvalues and supports for a complete description of the phase- eigenvalues for the enhanced description of real two-phase debris flows and landslide motions.


2017 ◽  
Vol 7 (4) ◽  
pp. 14-19
Author(s):  
Galina N. RYAZANOVA ◽  
Anastasia Yu. PROKOPYEVA

The analysis of existing Russian and foreign methods for determination of lateral pressure of light concrete mix laid in the formwork, its scope and technological factors is proposed as well as the study of the processes associated with the laying of light concrete mixture in the formwork system from the position of the resulting operational impacts. The results reveal that the pressure on the formwork for these methods depends on speed of concreting of the structure, and the distribution of lateral pressure light concrete mixture according to the height of the formwork is similar to the eff ects of heavy concrete and may be made by analogy with the plots of hydrostatic pressure, it is necessary to bring the properties of light concrete mix that consolidate by vibration to the properties of the heavy liquids with the corresponding density values.


2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Mojtaba Ahmadabadi ◽  
Mohammad Karim Faghirizadeh

In this study, a formulation has been proposed to calculate the pressure on wall and determine the angle of failure wedge based on limit equilibrium method. The mentioned formulation is capable of calculating active pressure coefficient, culmination of forces in failure surface, and pressure distribution on wall with the effect of line surcharge. In addition, based on the proposed method, a simple formula has been proposed to calculate the angle of failure wedge by the effect of surcharge. Moreover, the proposed approach has the advantage of taking into account the effect of surcharge on elastoplastic environment by considering the parameters of soil and determining the extent to which the surcharge is effective in pressure distribution on the wall. However, in most previous methods and specifications, resultant lateral pressure from surcharge in elastic environment had been considered. Finally, based on the obtained results, the design diagrams for different soils and different surcharges have been proposed. According to these diagrams, pressure on wall, pressure distribution on wall, and angle of failure wedge will easily be achieved. Also, a computer program has been written in MATLAB software environment. Using the results of these codes, the pressure on wall with the effect of surcharge, the angle of failure wedge, and pressure distribution on wall will be determined.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1549
Author(s):  
Michał A. Glinicki ◽  
Jacek Gołaszewski ◽  
Grzegorz Cygan

High-fluidity and self-compacting concrete (SCC) mixes were developed using special aggregates for radiation-shielding concrete. The special aggregates comprised heavyweight and hydrous aggregates (crushed magnetite, crushed serpentine, and their mixtures), which were selected to provide an enhanced attenuation of gamma and neutron radiation, respectively. For the mixed concrete design with a bulk density of up to 3570 kg/m3, two cement types were used: Portland cement CEM I and slag cement CEM III/A. The basic properties of the fresh self-compacting concrete were evaluated and the lateral formwork pressure exerted by the freshly mixed self-compacting concrete was measured and analyzed. An original test setup was developed for the determination of the lateral pressure on the square column formwork with pressure measurements carried out using six strain gauge pressure transducers, which was adequate for heavyweight concrete mixture testing. Self-compacting concrete mixtures containing a magnetite aggregate or blends of serpentine and magnetite aggregates with a slump flow of at least 550 mm were developed. The lateral pressure on the formwork was directly proportional to the density of the self-compacting heavyweight concrete mixes. The maximum values of the lateral pressure recorded in the test at a casting speed of 1.5 m/h did not exceed 27 kPa and 55% of hydrostatic pressure. Concrete mixtures with basalt, magnetite, and magnetite/serpentine blended aggregates were found to develop sufficient shear strength for proper stability during casting.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xudong Liu ◽  
Wenlong Shen ◽  
Jianbiao Bai ◽  
Rui Wang ◽  
Jizhong Kang ◽  
...  

Underground space is vulnerable to large deformation influenced by the abnormal stress induced by the bearing coal pillar. A numerical simulation model was established to determine the redistribution of the abnormal stress induced by the mining activities. The double-yield model, the strain softening model, the interface model, and the Mohr–Coulomb model were determined to simulate the gob compaction effect, the pillar strength reduction effect, the structure plane discontinuity effect, and the rock mechanical behavior, respectively. This numerical simulation model is reliable to predict the abnormal stress under the bearing coal pillar by the comparison of the abutment stress from this model and the existing theoretical model as well as the entry roof surface displacement from this model and the field measuring method. The results from the validated numerical model indicate that the abnormal stress including stress concentration coefficient, stress gradient, and lateral pressure coefficient will redistribute to another state that the stress concentration coefficient and stress gradient increase gradually and then decrease, and the lateral pressure coefficient decreases gradually, then increases, and finally decreases sharply with the approach of the mining working face. Their maximum increasing rates are calculated as 121.05%, 198.56%, and 236.82%, respectively. This predicted mining-induced redistribution of the abnormal stress is available for designing the underground entry layout in the determination of the entry position, determination of the driving operation time, mining disturbing range warning, and the prediction of the strengthening support area.


Sign in / Sign up

Export Citation Format

Share Document