On the existence theorem for the barotronic motion of a compressible inviscid fluid in the half-space

1993 ◽  
Vol 163 (1) ◽  
pp. 265-289 ◽  
Author(s):  
H. Beirão da Veiga
1983 ◽  
Vol 50 (2) ◽  
pp. 405-414 ◽  
Author(s):  
D. B. Bogy ◽  
S. M. Gracewski

The reflection coefficient is derived for an isotropic, homogeneous elastic layer of arbitrary thickness that is perfectly bonded to such an elastic half-space of a different material for the case when plane waves are incident from an inviscid fluid onto the layered solid. The derived function is studied analytically by considering several limiting cases of geometry and materials to recover previously known results. Approximate reflection coefficents are then derived using various plate models for the layer to obtain simpler expressions that are useful for small values of σd, where σ is the wave number and d is the layer thickness. Numerical results based on all the models for the propagation of interface waves localized near the fluid-solid boundary are obtained and compared. These results are also compared with some previously published experimental measurements.


2005 ◽  
Vol 25 (3) ◽  
pp. 205-223 ◽  
Author(s):  
Chi-Hsin Lin ◽  
Vincent W. Lee ◽  
Mihailo D. Trifunac

2015 ◽  
Vol 23 (1) ◽  
pp. 127-170 ◽  
Author(s):  
Rajneesh Kumar

Abstract The present article deals with the two parts: (i) The propagation of plane waves in a microstretch thermoelastic diffusion solid of infinite extent. (ii) The reflection and transmission of plane waves at a plane interface between inviscid fluid half-space and micropolar thermoelastic diffusion solid half-space. It is found that for two-dimensional model, there exist four coupled longitudinal waves, that is, longitudinal displacement wave (LD), thermal wave (T), mass diffusion wave (MD) and longitudinal microstretch wave (LM) and two coupled transverse waves namely (CD-I and CD-II waves). The phase velocity, attenuation coefficient, specific loss and penetration depth are computed numerically and depicted graphically. In the second part, it is noticed that the amplitude ratios of various reflected and transmitted waves are functions of angle of incidence, frequency of incident wave and are influenced by the microstretch thermoelastic diffusion properties of the media. The expressions of amplitude ratios and energy ratios are obtained in closed form. The energy ratios have been computed numerically for a particular model. The variations of energy ratios with angle of incidence for thermoelastic diffusion media in the context of Lord-Shulman (L-S) [1] and Green-Lindsay (G-L) [2] theories are depicted graphically. Some particular cases are also deduced from the present investigation.


2015 ◽  
Vol 37 (4) ◽  
pp. 303-315 ◽  
Author(s):  
Pham Chi Vinh ◽  
Nguyen Thi Khanh Linh ◽  
Vu Thi Ngoc Anh

This paper presents  a technique by which the transfer matrix in explicit form of an orthotropic layer can be easily obtained. This transfer matrix is applicable for both the wave propagation problem and the reflection/transmission problem. The obtained transfer matrix is then employed to derive the explicit secular equation of Rayleigh waves propagating in an orthotropic half-space coated by an orthotropic layer of arbitrary thickness.


Sign in / Sign up

Export Citation Format

Share Document