The microtubular cytoskeleton and chromosomes of unfertilized human oocytes aged in vitro

1988 ◽  
Vol 80 (3) ◽  
pp. 259-264 ◽  
Author(s):  
U. Eichenlaub-Ritter ◽  
A. Stahl ◽  
J. M. Luciani
1997 ◽  
Vol 68 (5) ◽  
pp. 920-926 ◽  
Author(s):  
Sung-Eun Park ◽  
Weon-Young Son ◽  
Sook-Hwan Lee ◽  
Kyung-Ah Lee ◽  
Jung-Jae Ko ◽  
...  

2000 ◽  
Vol 74 (6) ◽  
pp. 1137-1141 ◽  
Author(s):  
Ji Wu ◽  
Lizhu Zhang ◽  
Xiuyun Wang
Keyword(s):  

2006 ◽  
Vol 82 (10) ◽  
pp. 677-682 ◽  
Author(s):  
Mu Shu-Chi ◽  
Hwang Jiann-Loung ◽  
Lin Yu-Hung ◽  
Sung Tseng-Chen ◽  
Lin Ming-I ◽  
...  

2014 ◽  
Vol 31 (5) ◽  
pp. 623-623
Author(s):  
Duo Wei ◽  
Cuilian Zhang ◽  
Juanke Xie ◽  
Xiaobing Song ◽  
Baoli Yin ◽  
...  

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
G Karavani ◽  
P Wasserzug-Pash ◽  
T Mordechai-Daniel ◽  
M Klutstein ◽  
T Imbar

Abstract Study question Does human oocytes in-vitro maturation (IVM) effectiveness change throughout childhood, adolescence and adulthood in girls and women undergoing fertility preservation via ovarian tissue cryopreservation (OTC) prior to chemo-radiotherapy exposure? Summary answer The optimal age for IVM is from menarche to 25 years, while pre-menarche girls and women older than 30 years have extremely low maturation rates. What is known already In vitro maturation of oocytes from antral follicles seen during tissue harvesting is a fertility preservation technique with potential advantages over OTC, as mature frozen and later thawed oocyte used for fertilization poses decreased risk of malignant cells re-seeding, as compared to ovarian tissue implantation. We previously demonstrated that IVM performed following OTC in fertility preservation patients, even in pre-menarche girls, yields a fair amount of oocytes available for IVM and freezing for future use. Study design, size, duration A retrospective cohort study, evaluating IVM outcomes in chemotherapy naïve patients referred for fertility preservation by OTC that had oocyte collected from the medium with attempted IVM between 2003 and 2020 in a university affiliated tertiary center. Participants/materials, setting, methods A total of 133 chemotherapy naïve patients aged 1–35 years with attempted IVM were included in the study. The primary outcome was IVM rate in the different age groups – pre-menarche (1–5 years and ≥6 years), post-menarche (menarche–17 years), young adults (18–24 years) and adults (25–29 and 30–35 years). Comparison between paired groups for significant difference in the IVM rate parameter was done using the Tukey’s Studentized Range (HSD) Test. Main results and the role of chance A gradual increase in mean IVM rate was demonstrated in the age groups over 1 to 25 years (4.6% (1–5 years), 23.8% (6 years to menarche) and 28.4% (menarche to 17 years), with a peak of 38.3% in the 18–24 years group, followed by a decrease in the 25–29 years group (19.3%), down to a very low IVM rate (8.9%) in the 30–35 years group. A significant difference in IVM rates was noted between the age extremes – the very young (1–5 years) and the oldest (30–35 years) groups, as compared with the 18–24-year group (p < 0.001). Number of oocytes matured, percent of patients with matured oocytes and overall maturation rate differed significantly (p < 0.001). Limitations, reasons for caution Data regarding ovarian reserve evaluation was not available for most of the patients, due to our pre-op OTC procedures protocol. None of our patients have used their frozen in-vitro matured oocytes, as such further implications of age on in-vitro matured oocytes quality and implantation potential has yet to be evaluated. Wider implications of the findings: Our finding of extremely low success rates in those very young (under 6 years) and older (≥30 years) patients suggest that IVM of oocyte retrieved during OTC prior to chemotherapy should not be attempted in these age group. Trial registration number N/A


2013 ◽  
pp. 115-131
Author(s):  
Baris Ata ◽  
Jack Huang ◽  
Ri-Cheng Chian

2020 ◽  
Author(s):  
Silvia Llonch ◽  
Montserrat Barragán ◽  
Paula Nieto ◽  
Anna Mallol ◽  
Marc Elosua-Bayes ◽  
...  

AbstractStudy questionTo which degree does maternal age affect the transcriptome of human oocytes at the germinal vesicle (GV) stage or at metaphase II after maturation in vitro (IVM-MII)?Summary answerWhile the oocytes’ transcriptome is predominantly determined by maturation stage, transcript levels of genes related to chromosome segregation, mitochondria and RNA processing are affected by age after in vitro maturation of denuded oocytes.What is known alreadyFemale fertility is inversely correlated with maternal age due to both a depletion of the oocyte pool and a reduction in oocyte developmental competence. Few studies have addressed the effect of maternal age on the human mature oocyte (MII) transcriptome, which is established during oocyte growth and maturation, and the pathways involved remain unclear. Here, we characterize and compare the transcriptomes of a large cohort of fully grown GV and IVM-MII oocytes from women of varying reproductive age.Study design, size, durationIn this prospective molecular study, 37 women were recruited from May 2018 to June 2019. The mean age was 28.8 years (SD=7.7, range 18-43). A total of 72 oocytes were included in the study at GV stage after ovarian stimulation, and analyzed as GV (n=40) and in vitro matured oocytes (IVM-MII; n=32).Participants/materials, setting, methodsDenuded oocytes were included either as GV at the time of ovum pick-up or as IVM-MII after in vitro maturation for 30 hours in G2™ medium, and processed for transcriptomic analysis by single-cell RNA-seq using the Smart-seq2 technology. Cluster and maturation stage marker analysis were performed using the Seurat R package. Genes with an average fold change greater than 2 and a p-value < 0.01 were considered maturation stage markers. A Pearson correlation test was used to identify genes whose expression levels changed progressively with age. Those genes presenting a correlation value (R) >= |0.3| and a p-value < 0.05 were considered significant.Main results and the role of chanceFirst, by exploration of the RNA-seq data using tSNE dimensionality reduction, we identified two clusters of cells reflecting the oocyte maturation stage (GV and IVM-MII) with 4,445 and 324 putative marker genes, respectively. Next we identified genes, for which RNA levels either progressively increased or decreased with age. This analysis was performed independently for GV and IVM-MII oocytes. Our results indicate that the transcriptome is more affected by age in IVM-MII oocytes (1,219 genes) than in GV oocytes (596 genes). In particular, we found that genes involved in chromosome segregation and RNA splicing significantly increase in transcript levels with age, while genes related to mitochondrial activity present lower transcript levels with age. Gene regulatory network analysis revealed potential upstream master regulator functions for genes whose transcript levels present positive (GPBP1, RLF, SON, TTF1) or negative (BNC1, THRB) correlation with age.Limitations, reasons for cautionIVM-MII oocytes used in this study were obtained after in vitro maturation of denuded GV oocytes, therefore, their transcriptome might not be fully representative of in vivo matured MII oocytes.The Smart-seq2 methodology used in this study detects polyadenylated transcripts only and we could therefore not assess non-polyadenylated transcripts.Wider implications of the findingsOur analysis suggests that advanced maternal age does not globally affect the oocyte transcriptome at GV or IVM-MII stages. Nonetheless, hundreds of genes displayed altered transcript levels with age, particularly in IVM-MII oocytes. Especially affected by age were genes related to chromosome segregation and mitochondrial function, pathways known to be involved in oocyte ageing. Our study thereby suggests that misregulation of chromosome segregation and mitochondrial pathways also at the RNA-level might contribute to the age-related quality decline in human oocytes.Study funding/competing interest(s)This study was funded by the AXA research fund, the European commission, intramural funding of Clinica EUGIN, the Spanish Ministry of Science, Innovation and Universities, the Catalan Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) and by contributions of the Spanish Ministry of Economy, Industry and Competitiveness (MEIC) to the EMBL partnership and to the “Centro de Excelencia Severo Ochoa”.The authors have no conflict of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document