Concentrationo-dependence of nonelectrolyte permeability of toad bladder

1979 ◽  
Vol 48 (1) ◽  
pp. 21-42 ◽  
Author(s):  
Jing S. Chen ◽  
Mackenzie Walser

1980 ◽  
Vol 53 (3) ◽  
pp. 235-236
Author(s):  
Alvin Essig ◽  
M. Walser ◽  
J. S. Chen


1975 ◽  
Vol 67 (1) ◽  
pp. 119-125
Author(s):  
P. J. BENTLEY

SUMMARY The electrical potential difference and short-circuit current (scc, reflecting active transmural sodium transport) across the toad urinary bladder in vitro was unaffected by the presence of hypo-osmotic solutions bathing the mucosal (urinary) surface, providing that the transmural flow of water was small. Vasopressin increased the scc across the toad bladder (the natriferic response), but this stimulation was considerably reduced in the presence of a hypo-osmotic solution on the mucosal side, conditions under which water transfer across the membrane was also increased. This inhibition of the natriferic response did not depend on the direction of the water movement, for if the osmotic gradient was the opposite way to that which normally occurs, the response to vasopressin was still reduced. The natriferic response to cyclic AMP was also inhibited in the presence of an osmotic gradient. Aldosterone increased the scc and Na+ transport across the toad bladder but this response was not changed when an osmotic gradient was present. The physiological implications of these observations and the possible mechanisms involved are discussed.



1969 ◽  
Vol 31 (4) ◽  
pp. 547-554 ◽  
Author(s):  
R.S Snart ◽  
T Dalton ◽  
D.W Wright


1983 ◽  
Vol 258 (5) ◽  
pp. 3388-3395
Author(s):  
A Truscello ◽  
K Geering ◽  
H P Gäggeler ◽  
B C Rossier




1991 ◽  
Vol 261 (5) ◽  
pp. F873-F879 ◽  
Author(s):  
A. S. Brem ◽  
K. L. Matheson ◽  
J. L. Barnes ◽  
D. J. Morris

The enzyme 11 beta-hydroxysteroid dehydrogenase (11 beta-OHSD) metabolizes glucocorticoid hormones and diminishes their ability to induce sodium transport. In these studies, we determined the location of this enzyme in toad bladder and assessed the biological role for its 11-dehydro end product. Employing a polyclonal antibody directed toward 11 beta-OHSD and immunofluorescence techniques, we located the enzyme in the epithelial cell layer of the toad bladder. Although corticosterone (10(-7) M) can partially suppress aldosterone (10(-7) M)-stimulated short-circuit current (SCC), a clear excess of corticosterone (10(-6) M) did not inhibit the aldosterone-induced induced (10(-8) M) rise in SCC (n = 6). The 11-dehydro product of corticosterone, 11-dehydrocorticosterone (compound A) added to the serosal bath suppressed aldosterone (10(-8) M) peak SCC (360 min) in a dose-dependent fashion reaching 46 +/- 5% of control values at 10(-5) M (n = 6; P less than 0.001). Compound A (10(-5) M) in the mucosal bath also was capable of partially inhibiting the peak aldosterone rise in SCC to 63 +/- 7% of control values with aldosterone at 10(-8) M (n = 6; P less than 0.01) and to 64 +/- 10% of control values with aldosterone at 10(-7) M (n = 9; P less than 0.01). Compound A alone at 10(-5) M did not have any effect on SCC. Isolated toad bladders were not able to transform compound A (at 10(-8) and 10(-5) M) back to corticosterone. Thus the 11-dehydro end product of 11 beta-OHSD (compound A) may play a biologic role by regulating a component of mineralocorticoid-induced sodium transport.



1974 ◽  
Vol 332 (3) ◽  
pp. 350-357 ◽  
Author(s):  
Barbara Beckman ◽  
Beat Guertler ◽  
Rebecca Leaf ◽  
Patricia Witkum ◽  
Geoffrey W.G. Sharp


1981 ◽  
Vol 37 (7) ◽  
pp. 742-744 ◽  
Author(s):  
A. Grosso ◽  
R. C. de Sousa
Keyword(s):  




Sign in / Sign up

Export Citation Format

Share Document