The assessment of tobacco smoke toxicity in tissue and organ culture: An in vitro arrangement for exposure under defined conditions

1974 ◽  
Vol 30 (4) ◽  
pp. 436-438 ◽  
Author(s):  
P. Davies ◽  
G. S. Kistler
Development ◽  
1962 ◽  
Vol 10 (4) ◽  
pp. 465-470
Author(s):  
Charles L. Foote ◽  
Florence M. Foote

Earlier reports (Foote & Foote, 1958a, b, 1959) describe growth and maintenance in vitro of larval organs, particularly gonads, of Rana catesbeiana and Xenopus laevis. Immature germ cells of both testes and ovaries are well maintained in vitro, especially if the culture medium is supplemented with watersoluble sex-hormonal substances, although germ cells in process of maturation become necrotic. Recently some urogenital organs from the salamander, Pleurodeles waltlii, have been grown in vitro. Tissues and organs from this amphibian might prove to be more suitable for tissue and organ culture investigations than those of Anurans. Animals at three different ages were used in this study: recently hatched larvae, metamorphosing animals, and adults. To determine whether sex differentiation would occur in vitro, trunk portions of young larvae of Pleurodeles waltlii of developmental stages 37–38 (Gallien & Durocher, 1957) were placed in organ cultures.


10.2741/a892 ◽  
2002 ◽  
Vol 7 (4) ◽  
pp. d1979-1989
Author(s):  
Patricia B Hoyer

Author(s):  
W Röper

AbstractIn June 2001, the CORESTA2 Board formally decided to broaden the scope of CORESTA by engaging in biosciences (other than tobacco agronomy and phytopathology), starting with in vitro toxicity testing and biomarkers of tobacco (smoke) exposure. Until then, work addressing biological aspects of smoking had only been done since 1996 by a special committee within CORESTA, reporting directly to the Scientific Commission, the Smoking Behaviour Committee. Membership of that committee was - similar to ACAC3 - by invitation only. The broadened scope consequently led to the re-shaping of the then Study Groups ‘Smoke’ and ‘Technology’ into ‘Smoke Science’ (SS) and ‘Product Technology’ (PT).Subsequently, three Sub-Groups (SG) and Task Forces (TF) were set up, reflecting this change: i) SG Smoking Behaviour (name change of former Committee in 2001), ii) TF ‘Nicotine Intake’ (2001, later on named ‘Nicotine Uptake’, disbanded in 2009) and iii) TF ‘In vitro Toxicity Testing of Tobacco Smoke’ (2002). Finally, a new SG ‘Biomarkers’ was launched in 2009 with a wider scope than its predecessor TF ‘Nicotine Uptake’. The work of these groups has had and still has significant impact on the scientific work within CORESTA, leading to numerous presentations at CORESTA meetings and publications in peer-reviewed journals.This paper provides a brief analysis of some 270 presentations and posters addressing tobacco smoke toxicity, human smoking behaviour or biomarkers, delivered at CORESTA Congresses and SSPT Joint Meetings between 1993 and 2011. More than 50% of these papers covered different aspects of toxicology, mainly in vitro toxicity testing methodologies, smoke exposure systems and other equipments. Other papers described the influence of cigarette design parameters on smoke toxicity. Approaches to human risk assessment were presented, including the search for suitable in vitro models of the major smoking related human diseases.CORESTA began discussing smoking behaviour topics at their Vienna meeting in 1995 and received five respective presentations there; indeed, the issue has various aspects, from smoking topography and human smoke yield to smoke uptake, deposition and retention, and… Why do people smoke at all?As early as 1996, a presentation was given on the determination of urinary mutagenicity in volunteers exposed to ETS (environmental tobacco smoke), apparently indicating a need for CORESTA to engage in this field and to face new challenges. Indeed, our knowledge of biomarkers and how to measure them has increased considerably over the years, and there is a clear trend towards using this knowledge for conducting clinical studies into the assessment of ‘modified risk tobacco products’.


2008 ◽  
Vol 5 (3) ◽  
pp. 391-394 ◽  
Author(s):  
Baghdad Science Journal

The studies on the antiviral compound chalcone in vitro in both tissue and organ culture systems against rubella virus glass that this compound relatively non toxic to the cell culture and organ culture of the concentration of 8 ug/ml or less, chalcone have significantly antiviral activity against rubella virus in tissue culture and organ culture. We find that a concentration of 0.03ug/ml or more inhibit the IOOTCID50 of rubella virus. The therapeutic index (TI) used in this study to evaluate the drug, the (TI) which is the ratio of the dose of drug which is just toxic (Maximum tolerated dose) to the dose which is just effective (Minimum effective dose). If this index is one or less it not possible to use the drug under the conditions outlined without causing side effect, if the index is larger than the margin of safety is accordingly great, the TI of chalcone against rubella virus more than 70, therefore this compound if used in man have no side effect .


2011 ◽  
Vol 12 (1) ◽  
pp. 92 ◽  
Author(s):  
Mohammed Hossain ◽  
Peter Mazzone ◽  
William Tierney ◽  
Luca Cucullo

1976 ◽  
Vol 35 (1) ◽  
pp. 13-25 ◽  
Author(s):  
Bruce C. Horten ◽  
Stephen R. Montague

Sign in / Sign up

Export Citation Format

Share Document