scholarly journals N=2 topological gauge theory, the Euler characteristic of moduli spaces, and the Casson invariant

1993 ◽  
Vol 152 (1) ◽  
pp. 41-71 ◽  
Author(s):  
Matthias Blau ◽  
George Thompson
1993 ◽  
Vol 08 (03) ◽  
pp. 573-585 ◽  
Author(s):  
MATTHIAS BLAU ◽  
GEORGE THOMPSON

We rederive the recently introduced N=2 topological gauge theories, representing the Euler characteristic of moduli spaces ℳ of connections, from supersymmetric quantum mechanics on the infinite-dimensional spaces [Formula: see text] of gauge orbits. To that end we discuss variants of ordinary supersymmetric quantum mechanics which have meaningful extensions to infinite-dimensional target spaces, and introduce supersymmetric quantum mechanics actions modeling the Riemannian geometry of submersions and embeddings, relevant to the projections [Formula: see text] and inclusions [Formula: see text] respectively. We explain the relation between Donaldson theory and the gauge theory of flat connections in three dimensions and illustrate the general construction by other two- and four-dimensional examples.


Author(s):  
Andrei Neguţ

Abstract We construct explicit elements $W_{ij}^k$ in (a completion of) the shifted quantum toroidal algebra of type $A$ and show that these elements act by 0 on the $K$-theory of moduli spaces of parabolic sheaves. We expect that the quotient of the shifted quantum toroidal algebra by the ideal generated by the elements $W_{ij}^k$ will be related to $q$-deformed $W$-algebras of type $A$ for arbitrary nilpotent, which would imply a $q$-deformed version of the Alday-Gaiotto-Tachikawa (AGT) correspondence between gauge theory with surface operators and conformal field theory.


2015 ◽  
Vol 24 (09) ◽  
pp. 1550050 ◽  
Author(s):  
Prayat Poudel

Taubes proved that the Casson invariant of an integral homology 3-sphere equals half the Euler characteristic of its instanton Floer homology. We extend this result to all closed oriented 3-manifolds with positive first Betti number by establishing a similar relationship between the Lescop invariant of the manifold and its instanton Floer homology. The proof uses surgery techniques.


2018 ◽  
Vol 2020 (17) ◽  
pp. 5450-5475 ◽  
Author(s):  
Jinwon Choi ◽  
Michel van Garrel ◽  
Sheldon Katz ◽  
Nobuyoshi Takahashi

Abstract We study the BPS invariants for local del Pezzo surfaces, which can be obtained as the signed Euler characteristic of the moduli spaces of stable one-dimensional sheaves on the surface $S$. We calculate the Poincaré polynomials of the moduli spaces for the curve classes $\beta $ having arithmetic genus at most 2. We formulate a conjecture that these Poincaré polynomials are divisible by the Poincaré polynomials of $((-K_S).\beta -1)$-dimensional projective space. This conjecture motivates the upcoming work on log BPS numbers [8].


2007 ◽  
Vol 188 ◽  
pp. 107-131 ◽  
Author(s):  
Masaki Tsukamoto

AbstractThis paper is one step toward infinite energy gauge theory and the geometry of infinite dimensional moduli spaces. We generalize a gluing construction in the usual Yang-Mills gauge theory to an “infinite energy” situation. We show that we can glue an infinite number of instantons, and that the resulting ASD connections have infinite energy in general. Moreover they have an infinite dimensional parameter space. Our construction is a generalization of Donaldson’s “alternating method”.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Filippo F. Favale ◽  
Sonia Brivio

AbstractLet C be a curve with two smooth components and a single node, and let 𝓤C(w, r, χ) be the moduli space of w-semistable classes of depth one sheaves on C having rank r on both components and Euler characteristic χ. In this paper, under suitable assumptions, we produce a projective bundle over the product of the moduli spaces of semistable vector bundles of rank r on each component and we show that it is birational to an irreducible component of 𝓤C(w, r, χ). Then we prove the rationality of the closed subset containing vector bundles with given fixed determinant.


Sign in / Sign up

Export Citation Format

Share Document