scholarly journals Gluing an Infinite Number of Instantons

2007 ◽  
Vol 188 ◽  
pp. 107-131 ◽  
Author(s):  
Masaki Tsukamoto

AbstractThis paper is one step toward infinite energy gauge theory and the geometry of infinite dimensional moduli spaces. We generalize a gluing construction in the usual Yang-Mills gauge theory to an “infinite energy” situation. We show that we can glue an infinite number of instantons, and that the resulting ASD connections have infinite energy in general. Moreover they have an infinite dimensional parameter space. Our construction is a generalization of Donaldson’s “alternating method”.

1993 ◽  
Vol 08 (03) ◽  
pp. 573-585 ◽  
Author(s):  
MATTHIAS BLAU ◽  
GEORGE THOMPSON

We rederive the recently introduced N=2 topological gauge theories, representing the Euler characteristic of moduli spaces ℳ of connections, from supersymmetric quantum mechanics on the infinite-dimensional spaces [Formula: see text] of gauge orbits. To that end we discuss variants of ordinary supersymmetric quantum mechanics which have meaningful extensions to infinite-dimensional target spaces, and introduce supersymmetric quantum mechanics actions modeling the Riemannian geometry of submersions and embeddings, relevant to the projections [Formula: see text] and inclusions [Formula: see text] respectively. We explain the relation between Donaldson theory and the gauge theory of flat connections in three dimensions and illustrate the general construction by other two- and four-dimensional examples.


1998 ◽  
Vol 13 (22) ◽  
pp. 3835-3883 ◽  
Author(s):  
M. REUTER

A hidden gauge theory structure of quantum mechanics which is invisible in its conventional formulation is uncovered. Quantum mechanics is shown to be equivalent to a certain Yang–Mills theory with an infinite-dimensional gauge group and a nondynamical connection. It is defined over an arbitrary symplectic manifold which constitutes the phase space of the system under consideration. The "matter fields" are local generalizations of states and observables; they assume values in a family of local Hilbert spaces (and their tensor products) which are attached to the points of phase space. Under local frame rotations they transform in the spinor representation of the metaplectic group Mp(2N), the double covering of Sp(2N). The rules of canonical quantization are replaced by two independent postulates with a simple group-theoretical and differential-geometrical interpretation. A novel background-quantum split symmetry plays a central role.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 957
Author(s):  
Branislav Popović ◽  
Lenka Cepova ◽  
Robert Cep ◽  
Marko Janev ◽  
Lidija Krstanović

In this work, we deliver a novel measure of similarity between Gaussian mixture models (GMMs) by neighborhood preserving embedding (NPE) of the parameter space, that projects components of GMMs, which by our assumption lie close to lower dimensional manifold. By doing so, we obtain a transformation from the original high-dimensional parameter space, into a much lower-dimensional resulting parameter space. Therefore, resolving the distance between two GMMs is reduced to (taking the account of the corresponding weights) calculating the distance between sets of lower-dimensional Euclidean vectors. Much better trade-off between the recognition accuracy and the computational complexity is achieved in comparison to measures utilizing distances between Gaussian components evaluated in the original parameter space. The proposed measure is much more efficient in machine learning tasks that operate on large data sets, as in such tasks, the required number of overall Gaussian components is always large. Artificial, as well as real-world experiments are conducted, showing much better trade-off between recognition accuracy and computational complexity of the proposed measure, in comparison to all baseline measures of similarity between GMMs tested in this paper.


Author(s):  
Andrei Neguţ

Abstract We construct explicit elements $W_{ij}^k$ in (a completion of) the shifted quantum toroidal algebra of type $A$ and show that these elements act by 0 on the $K$-theory of moduli spaces of parabolic sheaves. We expect that the quotient of the shifted quantum toroidal algebra by the ideal generated by the elements $W_{ij}^k$ will be related to $q$-deformed $W$-algebras of type $A$ for arbitrary nilpotent, which would imply a $q$-deformed version of the Alday-Gaiotto-Tachikawa (AGT) correspondence between gauge theory with surface operators and conformal field theory.


1979 ◽  
Vol 19 (12) ◽  
pp. 3649-3652 ◽  
Author(s):  
Eve Kovacs ◽  
Shui-Yin Lo

Sign in / Sign up

Export Citation Format

Share Document