Transverse disturbances in plane poiseuille flow. Two examples as a check on a numerical program for finite-amplitude disturbances in parallel flows

Meccanica ◽  
1969 ◽  
Vol 4 (2) ◽  
pp. 109-121 ◽  
Author(s):  
Ettore Bellomo
1969 ◽  
Vol 39 (3) ◽  
pp. 611-627 ◽  
Author(s):  
C. L. Pekeris ◽  
B. Shkoller

A disturbance of finite amplitude λ, which is periodic in the direction of the axis of the channel, is superimposed on plane Poiseuille flow, and the subsequent development of the disturbance is studied. The disturbance is represented by an expansion in the eigenfunctions of the Orr-Sommerfeld equation with coefficients which are functions of the time, and an accurate numerical solution of the truncated system of non-linear ordinary differential equations for the coefficients is obtained.It is found that even for Reynolds numbers R less than the critical value Rc, the flow breaks down when λ exceeds a critical value λc(R). This is shown in figure 11 for the case when the initial disturbance is represented by the first mode of the Orr-Sommerfeld equation. The development of this type of disturbance is illustrated in figures 1, 3 and 13 and, for the case of a higher-order mode initial disturbance, in figure 14. Near the time of breakdown, the curvature of the modified mean flow changes sign (figure 15), but a disturbance may die down even after a reversal in the sign of the curvature has taken place (see figure 2).The stability of plane Poiseuille flow to disturbances of finite amplitude is affected by the characteristics of the higher-order modes of the Orr-Sommerfeld equation. As shown in figures 4, 10, and 12, and in figures 5, 6, and 7, these modes are either of a ‘boundary type’, characteristic of the region near the wall, or of an ‘interior type’, characteristic of the centre of the channel. The modes in the transition zone, where the two types merge, are easily amplified through mutual constructive interference, even though individually they have high damping coefficients. It is these transition modes which are mainly responsible for the breakdown through finite amplitude effects.


1972 ◽  
Vol 51 (4) ◽  
pp. 687-704 ◽  
Author(s):  
W. D. George ◽  
J. D. Hellums

A general method for studying two-dimensional problems in hydrodynamic stability is presented and applied to the classical problem of predicting instability in plane Poiseuille flow. The disturbance stream function is expanded in a Fourier series in the axial space dimension which, on substitution into the Navier-Stokes equation, leads to a system of parabolic partial differential equations in the coefficient functions. An efficient, stable and accurate numerical method is presented for solving these equations. It is demonstrated that the numerical process is capable of accurate reproduction of known results from the linear theory of hydrodynamic stability.Disturbances that are stable according to linear theory are shown to become unstable with the addition of finite amplitude effects. This seems to be the first work of quantitative value for disturbances of moderate and larger amplitudes. A relationship between critical amplitude and Reynolds number is reported, the form of which indicates the existence of an absolute critical Reynolds number below which an arbitrary disturbance cannot be made unstable, no matter how large its initial amplitude. The critical curve shows significantly less effect of amplitude than do those obtained by earlier workers.


1960 ◽  
Vol 9 (3) ◽  
pp. 371-389 ◽  
Author(s):  
J. Watson

In Part 1 by Stuart (1960), a study was made of the growth of an unstable infinitesimal disturbance, or the decay of a finite disturbance through a stable infinitesimal disturbance to zero, in plane Poiseuille flow, and that paper gave the most important terms in a solution of the equations of motion. The greater part of the present paper is concerned with a re-formulation of this problem which readily yields the complete solution. By the same method a solution for Couette flow is obtained. This solution is only a formal one for the present because the conditions imposed in deriving the solution may not be valid for Couette flow; this flow is believed to be stable to infinitesimal disturbances of the type considered.


1978 ◽  
Vol 45 (1) ◽  
pp. 13-18 ◽  
Author(s):  
L. Wolf ◽  
Z. Lavan ◽  
H. J. Nielsen

The hydrodynamic stability of plane Poiseuille flow to infinitesimal and finite amplitude disturbances is investigated using a direct numerical technique. The governing equations are cast in terms of vorticity and stream function using second-order central differences in space. The vorticity equation is used to advance the vorticity values in time and successive over-relaxation is used to solve the stream function equation. Two programs were prepared, one for the linearized and the other for the complete disturbance equations. Results obtained by solving the linearized equations agree well with existing solutions for small disturbances. The nonlinear calculations reveal that the behavior of a disturbance depends on the amplitude and on the wave number. The behavior at wave numbers below and above the linear critical wave number is drastically different.


1974 ◽  
Vol 63 (4) ◽  
pp. 765-771 ◽  
Author(s):  
W. D. George ◽  
J. D. Hellums ◽  
B. Martin

Finite-amplitude disturbances in plane Poiseuille flow are studied by a method involving Fourier expansion with numerical solution of the resulting partial differential equations in the coefficient functions. A number of solutions are developed which extend to relatively long times so that asymptotic stability or instability can be established with a degree of confidence. The amplitude for neutral stability is established for a fixed wavenumber for two values of the Reynolds number. Details of the neutral velocity fluctuation are presented. These and earlier results are expressed in terms of the asymptotic amplitude and compared with results obtained by prior workers. The results indicate that the expansion methods used by prior workers may be valid only for amplitudes considerably smaller than 0·01.


1997 ◽  
Vol 332 ◽  
pp. 157-184 ◽  
Author(s):  
Sanjay S. Joshi ◽  
Jason L. Speyer ◽  
John Kim

A systems theory framework is presented for the linear stabilization of two-dimensional laminar plane Poiseuille flow. The governing linearized Navier-Stokes equations are converted to control-theoretic models using a numerical discretization scheme. Fluid system poles, which are closely related to Orr-Sommerfeld eigenvalues, and fluid system zeros are computed using the control-theoretic models. It is shown that the location of system zeros, in addition to the well-studied system eigenvalues, are important in linear stability control. The location of system zeros determines the effect of feedback control on both stable and unstable eigenvalues. In addition, system zeros can be used to determine sensor locations that lead to simple feedback control schemes. Feedback controllers are designed that make a new fluid-actuator-sensorcontroller system linearly stable. Feedback control is shown to be robust to a wide range of Reynolds numbers. The systems theory concepts of modal controllability and observability are used to show that feedback control can lead to short periods of highamplitude transients that are unseen at the output. These transients may invalidate the linear model, stimulate nonlinear effects, and/or form a path of ‘bypass’ transition in a controlled system. Numerical simulations are presented to validate the stabilization of both single-wavenumber and multiple-wavenumber instabilities. Finally, it is shown that a controller designed upon linear theory also has a strong stabilizing effect on two-dimensional finite-amplitude disturbances. As a result, secondary instabilities due to infinitesimal three-dimensional disturbances in the presence of a finite-amplitude two-dimensional disturbance cease to exist.


Sign in / Sign up

Export Citation Format

Share Document