Finite-amplitude neutral disturbances in plane Poiseuille flow

1974 ◽  
Vol 63 (4) ◽  
pp. 765-771 ◽  
Author(s):  
W. D. George ◽  
J. D. Hellums ◽  
B. Martin

Finite-amplitude disturbances in plane Poiseuille flow are studied by a method involving Fourier expansion with numerical solution of the resulting partial differential equations in the coefficient functions. A number of solutions are developed which extend to relatively long times so that asymptotic stability or instability can be established with a degree of confidence. The amplitude for neutral stability is established for a fixed wavenumber for two values of the Reynolds number. Details of the neutral velocity fluctuation are presented. These and earlier results are expressed in terms of the asymptotic amplitude and compared with results obtained by prior workers. The results indicate that the expansion methods used by prior workers may be valid only for amplitudes considerably smaller than 0·01.

2019 ◽  
Vol 880 ◽  
pp. 478-496 ◽  
Author(s):  
Shengqi Zhang ◽  
Zhenhua Xia ◽  
Yipeng Shi ◽  
Shiyi Chen

Spanwise rotating plane Poiseuille flow (RPPF) is one of the canonical flow problems to study the effect of system rotation on wall-bounded shear flows and has been studied a lot in the past. In the present work, a two-dimensional-three-component (2D/3C) model for RPPF is introduced and it is shown that the present model is equivalent to a thermal convection problem with unit Prandtl number. For low Reynolds number cases, the model can be used to study the stability behaviour of the roll cells. It is found that the neutral stability curves, critical eigensolutions and critical streamfunctions of RPPF at different rotation numbers ($Ro$) almost collapse with the help of a rescaling with a newly defined Rayleigh number $Ra$ and channel height $H$. Analytic expressions for the critical Reynolds number and critical wavenumber at different $Ro$ can be obtained. For a turbulent state with high Reynolds number, the 2D/3C model for RPPF is self-sustained even without extra excitations. Simulation results also show that the profiles of mean streamwise velocity and Reynolds shear stress from the 2D/3C model share the same linear laws as the fully three-dimensional cases, although differences on the intercepts can be observed. The contours of streamwise velocity fluctuations behave like plumes in the linear law region. We also provide an explanation to the linear mean velocity profiles observed at high rotation numbers.


1972 ◽  
Vol 51 (4) ◽  
pp. 687-704 ◽  
Author(s):  
W. D. George ◽  
J. D. Hellums

A general method for studying two-dimensional problems in hydrodynamic stability is presented and applied to the classical problem of predicting instability in plane Poiseuille flow. The disturbance stream function is expanded in a Fourier series in the axial space dimension which, on substitution into the Navier-Stokes equation, leads to a system of parabolic partial differential equations in the coefficient functions. An efficient, stable and accurate numerical method is presented for solving these equations. It is demonstrated that the numerical process is capable of accurate reproduction of known results from the linear theory of hydrodynamic stability.Disturbances that are stable according to linear theory are shown to become unstable with the addition of finite amplitude effects. This seems to be the first work of quantitative value for disturbances of moderate and larger amplitudes. A relationship between critical amplitude and Reynolds number is reported, the form of which indicates the existence of an absolute critical Reynolds number below which an arbitrary disturbance cannot be made unstable, no matter how large its initial amplitude. The critical curve shows significantly less effect of amplitude than do those obtained by earlier workers.


1968 ◽  
Vol 34 (1) ◽  
pp. 177-205 ◽  
Author(s):  
Chester E. Grosch ◽  
Harold Salwen

The linear stability of plane Poiseuille flow has been studied both for the steady flow and also for the case of a pressure gradient that is periodic in time. The disturbance streamfunction is expanded in a complete set of functions that satisfy the boundary conditions. The expansion is truncated after N terms, yielding a set of N linear first-order differential equations for the time dependence of the expansion coefficients.For the steady flow, calculations have been carried out for both symmetric and antisymmetric disturbances over a wide range of Reynolds numbers and disturbance wave-numbers. The neutral stability curve, curves of constant amplification and decay rate, and the eigenfunctions for a number of cases have been calculated. The eigenvalue spectrum has also been examined in some detail. The first N eigenvalues are obtained from the numerical calculations, and an asymptotic formula for the higher eigenvalues has been derived. For those values of the wave-number and Reynolds number for which calculations were carried out by L. H. Thomas, there is excellent agreement in both the eigenvalues and the eigenfunctions with the results of Thomas.For the time-dependent flow, it was found, for small amplitudes of oscillation, that the modulation tended to stabilize the flow. If the flow was not completely stabilized then the growth rate of the disturbance was decreased. For a particular wave-number and Reynolds number there is an optimum amplitude and frequency of oscillation for which the degree of stabilization is a maximum. For a fixed amplitude and frequency of oscillation the wave-number of the disturbance and the Reynolds number has been varied and a neutral stability curve has been calculated. The neutral stability curve for the modulated flow shows a higher critical Reynolds number and a narrower band of unstable wave-numbers than that of the steady flow. The physical mechanism responsible for this stabiIization appears to be an interference between the shear wave generated by the modulation and the disturbance.For large amplitudes, the modulation destabilizes the flow. Growth rates of the modulated flow as much as an order of magnitude greater than that of the steady unmodulated flow have been found.


The stability of plane Poiseuille flow in a channel forced by a wavelike motion on one of the channel walls is investigated. The amplitude Є of this forcing is taken to be small. The most dangerous modes of forcing are identified and it is found in general the critical Reynolds number is changed by O (Є) 2 . However, we identify two particular modes of forcing which give rise to decrements of order Є 2/3 and Є in the critical Reynolds number. Some types of forcing are found to generate sub critical stable finite amplitude perturbations to plane Poiseuille flow. This contrasts with the unforced case where the only stable solution is the zero amplitude solution. The forcing also deforms the unstable subcritical limit cycle solution from its usual circular shape into a more complicated shape. This has an effect on the threshold amplitude ideas suggested by, for example, Meksyn & Stuart (1951). It is found that the phase of disturbances must also be considered when finding the amplitude dependent critical Reynolds numbers.


1960 ◽  
Vol 9 (3) ◽  
pp. 353-370 ◽  
Author(s):  
J. T. Stuart

This paper considers the nature of a non-linear, two-dimensional solution of the Navier-Stokes equations when the rate of amplification of the disturbance, at a given wave-number and Reynolds number, is sufficiently small. Two types of problem arise: (i) to follow the growth of an unstable, infinitesimal disturbance (supercritical problem), possibly to a state of stable equilibrium; (ii) for values of the wave-number and Reynolds number for which no unstable infinitesimal disturbance exists, to follow the decay of a finite disturbance from a possible state of unstable equilibrium down to zero amplitude (subcritical problem). In case (ii) the existence of a state of unstable equilibrium implies the existence of unstable disturbances. Numerical calculations, which are not yet completed, are required to determine which of the two possible behaviours arises in plane Poiseuille flow, in a given range of wave-number and Reynolds number.It is suggested that the method of this paper (and of the generalization described by Part 2 by J. Watson) is valid for a wide range of Reynolds numbers and wave-numbers inside and outside the curve of neutral stability.


2001 ◽  
Author(s):  
Hidesada Kanda

Abstract For plane Poiseuille flow, results of previous investigations were studied, focusing on experimental data on the critical Reynolds number, the entrance length, and the transition length. Consequently, concerning the natural transition, it was confirmed from the experimental data that (i) the transition occurs in the entrance region, (ii) the critical Reynolds number increases as the contraction ratio in the inlet section increases, and (iii) the minimum critical Reynolds number is obtained when the contraction ratio is the smallest or one, and there is no-shaped entrance or straight parallel plates. Its value exists in the neighborhood of 1300, based on the channel height and the average velocity. Although, for Hagen-Poiseuille flow, the minimum critical Reynolds number is approximately 2000, based on the pipe diameter and the average velocity, there seems to be no significant difference in the transition from laminar to turbulent flow between Hagen-Poiseuille flow and plane Poiseuille flow.


1984 ◽  
Vol 148 ◽  
pp. 193-205 ◽  
Author(s):  
T. R. Akylas ◽  
J.-P. Demurger

A theoretical study is made of the stability of pipe flow with superimposed rigid rotation to finite-amplitude disturbances at high Reynolds number. The non-axisymmetric mode that requires the least amount of rotation for linear instability is considered. An amplitude expansion is developed close to the corresponding neutral stability curve; the appropriate Landau constant is calculated. It is demonstrated that the flow exhibits nonlinear subcritical instability, the nonlinear effects being particularly strong owing to the large magnitude of the Landau constant. These findings support the view that a small amount of extraneous rotation could play a significant role in the transition to turbulence of pipe flow.


When two parallel plates move normal to each other with a slow time-dependent speed, the velocity field developed in the intervening film of fluid is approximately that of plane Poiseuille flow, except that the magnitude of the velocity is dependent on time and on the coordinate parallel to the planes. This fact is intrinsic to Reynolds’ lubrication theory, and can be shown to follow from the Navier-Stokes equations when both the modified Reynolds number ( Re M ) and an aspect ratio ( δ ) are small. The modified Reynolds number is the product of δ and an actual Reynolds number ( Re ), which is based on the gap between the planes and on a characteristic velocity. The occurrence of flow instability and of turbulence in the film depend on Re . Typical values of Re , which are known to be required for the linear instability of plane Poiseuille flow, are of order 6000. This condition can be achieved, even if Re M is of order 1, provided that δ is of order 10 -4 . Such parameter values are typical of lubrication problems. The Orr-Sommerfeld equation governing flow instability is derived in this paper by use of the WKBJ technique, δ being the approximate small parameter to represent the small length-scale of the disturbance oscillations compared with the larger scale of the basic laminar flow. However, the coefficients in the Orr-Sommerfeld equation depend on slow space and time variables. Consequently the eigenrelation, derivable from the Orr-Sommerfeld equation and the associated boundary conditions, constitutes a nonlinear first-order partial differential equation for a phase function. This equation is solved by use of Charpit’s method for certain special forms of the time-dependent gap between the planes, followed by detailed numerical calculations. The relation between time-dependence and flow instability is delineated by the calculated results. In detail the nature of the instability can be described as follows. We consider a disturbance wave at or near a particular station, the initial distribution of amplitude being gaussian in the slow coordinate parallel to the planes. In the context of the Orr-Sommerfeld equation and its eigenrelation, the particular station implies an equivalent Reynolds number, while the initial distribution of the disturbance wave implies an equivalent wavenumber. As time increases, the disturbance wave can be considered to move in the instability diagram of equivalent wavenumber against Reynolds number, in the sense that these parameters are time- and space-dependent for the evolution of the disturbance-wave system. For our detailed calculations we use a quadratic approximation to the eigenrelation, an approximation which is quite accurate. If the initial distribution implies a point within the neutral curve, when the plates are squeezed together the equivalent wavenumber falls while the equivalent Reynolds number rises, and amplification takes place until the lower branch of the neutral curve is nearly crossed. If the plates are pulled apart (dilatation) the equivalent wavenumber rises, while the Reynolds number drops, and amplification takes place until the upper branch of the neutral curve has been just crossed. In the case of dilatation the transition from amplification to damping takes place more quickly than for the case of squeezing, in part due to the geometry of the neutral curve.


1981 ◽  
Vol 108 ◽  
pp. 101-125 ◽  
Author(s):  
Fredrick W. Cotton ◽  
Harold Salwen

Linear stability of rotating Hagen-Poiseuille flow has been investigated by an orthonormal expansion technique, confirming results by Pedley and Mackrodt and extending those results to higher values of the wavenumber |α|, the Reynolds number R, and the azimuthal index n. For |α| [gsim ] 2, the unstable region is pushed to considerably higher values of R and the angular velocity, Ω. In this region, the neutral stability curves obey a simple scaling, consistent with the unstable modes being centre modes. For n = 1, individual neutral stability curves have been calculated for several of the low-lying eigenmodes, revealing a complicated coupling between modes which manifests itself in kinks, cusps and loops in the neutral stability curves; points of degeneracy in the R, Ω plane; and branching behaviour on curves which circle a point of degeneracy.


Sign in / Sign up

Export Citation Format

Share Document