Influences of cell cycle on uptake of SV40-DNA by diploid human cells

1971 ◽  
Vol 27 (5) ◽  
pp. 560-562
Author(s):  
D. Mukerjee ◽  
J. M. Bowen
Keyword(s):  
2008 ◽  
Vol 228 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Takafumi Ochi ◽  
Kayoko Kita ◽  
Toshihide Suzuki ◽  
Alice Rumpler ◽  
Walter Goessler ◽  
...  

2010 ◽  
Vol 119 (1) ◽  
pp. 84-92 ◽  
Author(s):  
Chia-Hao Chang ◽  
Feng-Yih Yu ◽  
Ting-Shun Wu ◽  
Li-Ting Wang ◽  
Biing-Hui Liu

1994 ◽  
Vol 107 (2) ◽  
pp. 425-434 ◽  
Author(s):  
A.B. Hassan ◽  
R.J. Errington ◽  
N.S. White ◽  
D.A. Jackson ◽  
P.R. Cook

HeLa cells synchronized at different stages of the cell cycle were permeabilized and incubated with analogues of nucleotide triphosphates; then sites of incorporation were immunolabeled with the appropriate fluorescent probes. Confocal microscopy showed that sites of replication and transcription were not diffusely spread throughout nuclei, reflecting the distribution of euchromatin; rather, they were concentrated in ‘foci’ where many polymerases act together. Transcription foci aggregated as cells progressed towards the G1/S boundary; later they dispersed and became more diffuse. Replication was initiated only at transcription sites; later, when heterochromatin was replicated in enlarged foci, these remained sites of transcription. This illustrates the dynamic nature of nuclear architecture and suggests that transcription may be required for the initiation of DNA synthesis.


1985 ◽  
Vol 225 (2) ◽  
pp. 529-533 ◽  
Author(s):  
A J Strain ◽  
W A H Wallace ◽  
A H Wyllie

Synchronized CV-1 cells were transfected with SV40 (simian virus 40) DNA-calcium phosphate co-precipitates. In the presence of carrier DNA, the transfection efficiency of SV40 DNA was decreased 5-fold in S-phase cells and was increased 4-fold in preparations of mitotically enriched cells as compared with asynchronous controls. No difference was observed when carrier DNA was omitted, when cells had progressed through S-phase and into G2-phase, or when the infectivity of cells to intact SV40 virus was tested. These results highlight the importance of cell-cycle-dependent factors on DNA-mediated gene transfer.


2011 ◽  
Vol 16 (2) ◽  
pp. 400-406 ◽  
Author(s):  
In S. Kim ◽  
Xianghao Ren ◽  
Jin-Soo Chang ◽  
Jin Wook Lee ◽  
Hye-Weon Yu ◽  
...  

2018 ◽  
Vol 115 (10) ◽  
pp. 2532-2537 ◽  
Author(s):  
Frank S. Heldt ◽  
Alexis R. Barr ◽  
Sam Cooper ◽  
Chris Bakal ◽  
Béla Novák

Human cells that suffer mild DNA damage can enter a reversible state of growth arrest known as quiescence. This decision to temporarily exit the cell cycle is essential to prevent the propagation of mutations, and most cancer cells harbor defects in the underlying control system. Here we present a mechanistic mathematical model to study the proliferation–quiescence decision in nontransformed human cells. We show that two bistable switches, the restriction point (RP) and the G1/S transition, mediate this decision by integrating DNA damage and mitogen signals. In particular, our data suggest that the cyclin-dependent kinase inhibitor p21 (Cip1/Waf1), which is expressed in response to DNA damage, promotes quiescence by blocking positive feedback loops that facilitate G1 progression downstream of serum stimulation. Intriguingly, cells exploit bistability in the RP to convert graded p21 and mitogen signals into an all-or-nothing cell-cycle response. The same mechanism creates a window of opportunity where G1 cells that have passed the RP can revert to quiescence if exposed to DNA damage. We present experimental evidence that cells gradually lose this ability to revert to quiescence as they progress through G1 and that the onset of rapid p21 degradation at the G1/S transition prevents this response altogether, insulating S phase from mild, endogenous DNA damage. Thus, two bistable switches conspire in the early cell cycle to provide both sensitivity and robustness to external stimuli.


Sign in / Sign up

Export Citation Format

Share Document