The effect of environmental micropollutant (DEET) on the expression of cell cycle and apoptosis regulatory proteins in human cells

2011 ◽  
Vol 16 (2) ◽  
pp. 400-406 ◽  
Author(s):  
In S. Kim ◽  
Xianghao Ren ◽  
Jin-Soo Chang ◽  
Jin Wook Lee ◽  
Hye-Weon Yu ◽  
...  
Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 107 ◽  
Author(s):  
Fang Yan ◽  
Guangmei Liu ◽  
Tingting Chen ◽  
Xiaochen Fu ◽  
Miao-Miao Niu

The polo-box domain of polo-like kinase 1 (PLK1-PBD) is proved to have crucial roles in cell proliferation. Designing PLK1-PBD inhibitors is challenging due to their poor cellular penetration. In this study, we applied a virtual screening workflow based on a combination of structure-based pharmacophore modeling with molecular docking screening techniques, so as to discover potent PLK1-PBD peptide inhibitors. The resulting 9 virtual screening peptides showed affinities for PLK1-PBD in a competitive binding assay. In particular, peptide 5 exhibited an approximately 100-fold increase in inhibitory activity (IC50 = 70 nM), as compared with the control poloboxtide. Moreover, cell cycle experiments indicated that peptide 5 effectively inhibited the expression of p-Cdc25C and cell cycle regulatory proteins by affecting the function of PLK1-PBD, thereby inducing mitotic arrest at the G2/M phase. Overall, peptide 5 can serve as a potent lead for further investigation as PLK1-PBD inhibitors.


2001 ◽  
Vol 276 (27) ◽  
pp. 25030-25036 ◽  
Author(s):  
Lı́dia Mongay ◽  
Susana Plaza ◽  
Elena Vigorito ◽  
Carles Serra-Pagès ◽  
Jordi Vives

2001 ◽  
Vol 194 (4) ◽  
pp. 436-443 ◽  
Author(s):  
Mohamed A. Elkablawy ◽  
Perry Maxwell ◽  
Kate Williamson ◽  
Neil Anderson ◽  
Peter W. Hamilton

2008 ◽  
Vol 228 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Takafumi Ochi ◽  
Kayoko Kita ◽  
Toshihide Suzuki ◽  
Alice Rumpler ◽  
Walter Goessler ◽  
...  

2004 ◽  
Vol 200 (3) ◽  
pp. 334-342 ◽  
Author(s):  
Antonio De Luca ◽  
Maria De Falco ◽  
Salvatore Iaquinto ◽  
Gaetano Iaquinto

1998 ◽  
Vol 114 ◽  
pp. A450
Author(s):  
J. Cristobal Aliaga ◽  
E. Calvo ◽  
J. Morisset ◽  
N. Rivard

2010 ◽  
Vol 119 (1) ◽  
pp. 84-92 ◽  
Author(s):  
Chia-Hao Chang ◽  
Feng-Yih Yu ◽  
Ting-Shun Wu ◽  
Li-Ting Wang ◽  
Biing-Hui Liu

1994 ◽  
Vol 107 (2) ◽  
pp. 425-434 ◽  
Author(s):  
A.B. Hassan ◽  
R.J. Errington ◽  
N.S. White ◽  
D.A. Jackson ◽  
P.R. Cook

HeLa cells synchronized at different stages of the cell cycle were permeabilized and incubated with analogues of nucleotide triphosphates; then sites of incorporation were immunolabeled with the appropriate fluorescent probes. Confocal microscopy showed that sites of replication and transcription were not diffusely spread throughout nuclei, reflecting the distribution of euchromatin; rather, they were concentrated in ‘foci’ where many polymerases act together. Transcription foci aggregated as cells progressed towards the G1/S boundary; later they dispersed and became more diffuse. Replication was initiated only at transcription sites; later, when heterochromatin was replicated in enlarged foci, these remained sites of transcription. This illustrates the dynamic nature of nuclear architecture and suggests that transcription may be required for the initiation of DNA synthesis.


2000 ◽  
Vol 278 (4) ◽  
pp. F515-F529 ◽  
Author(s):  
Stuart J. Shankland ◽  
Gunter Wolf

The response to glomerular and tubulointerstitial cell injury in most forms of renal disease includes changes in cell number (proliferation and apoptosis) and cell size (hyerptrophy). These events typically precede and may be reponsible for the accumulation of extracellular matrix proteins that leads to a decrease in renal function. There is increasing evidence showing that positive (cyclins and cyclin-dependent kinases) and negative (cyclin-dependent kinase inhibitors) cell cycle regulatory proteins have a critical role in regulating these fundamental cellular responses to immune and nonimmune forms of injury. Data now show that altering specific cell cycle proteins affects renal cell proliferation and improves renal function. Equally exciting is the expanding body of literature showing novel biological roles for cell cycle proteins in the regulation of cell hypertrophy and apoptosis. With increasing understanding of the role for cell cyle regulatory proteins in renal disease comes the hope for potential therapeutic inverventions.


Sign in / Sign up

Export Citation Format

Share Document