Climate of Chamela, Jalisco, and trends in the south coastal region of Mexico

1986 ◽  
Vol 36 (3-4) ◽  
pp. 297-316 ◽  
Author(s):  
S. H. Bullock
Keyword(s):  
2017 ◽  
Vol 17 (17) ◽  
pp. 10837-10854 ◽  
Author(s):  
Cathleen Schlundt ◽  
Susann Tegtmeier ◽  
Sinikka T. Lennartz ◽  
Astrid Bracher ◽  
Wee Cheah ◽  
...  

Abstract. A suite of oxygenated volatile organic compounds (OVOCs – acetaldehyde, acetone, propanal, butanal and butanone) were measured concurrently in the surface water and atmosphere of the South China Sea and Sulu Sea in November 2011. A strong correlation was observed between all OVOC concentrations in the surface seawater along the entire cruise track, except for acetaldehyde, suggesting similar sources and sinks in the surface ocean. Additionally, several phytoplankton groups, such as haptophytes or pelagophytes, were also correlated to all OVOCs, indicating that phytoplankton may be an important source of marine OVOCs in the South China and Sulu seas. Humic- and protein-like fluorescent dissolved organic matter (FDOM) components seemed to be additional precursors for butanone and acetaldehyde. The measurement-inferred OVOC fluxes generally showed an uptake of atmospheric OVOCs by the ocean for all gases, except for butanal. A few important exceptions were found along the Borneo coast, where OVOC fluxes from the ocean to the atmosphere were inferred. The atmospheric OVOC mixing ratios over the northern coast of Borneo were relatively high compared with literature values, suggesting that this coastal region is a local hotspot for atmospheric OVOCs. The calculated amount of OVOCs entrained into the ocean seemed to be an important source of OVOCs to the surface ocean. When the fluxes were out of the ocean, marine OVOCs were found to be enough to control the locally measured OVOC distribution in the atmosphere. Based on our model calculations, at least 0.4 ppb of marine-derived acetone and butanone can reach the upper troposphere, where they may have an important influence on hydrogen oxide radical formation over the western Pacific Ocean.


2017 ◽  
Vol 11 (1) ◽  
pp. 54-70 ◽  
Author(s):  
Najib Yusuf ◽  
Daniel Okoh ◽  
Ibrahim Musa ◽  
Samson Adedoja ◽  
Rabia Said

Background: Simultaneous measurements of air temperature were carried out using automatic weather stations at 14 tropical locations in Nigeria. Diurnal variations were derived from the 5-minute update cycle initial data for the years ranging between 2007 and 2013. The temperature trends in Nigeria revealed a continuous variability that is seasonally dependent within any particular year considered. Method: The analysis was carried out using available data from the network and the results are presented with a focus to characterize the temperature variations at different locations in the country using the mean, maximum and minimum temperatures from the north which is arid in nature to the south, which is a tropical monsoon climate type and a coastal region. Result: In overall, temperature variations in Nigeria were observed to have higher values in the far north, attributed to the influence of Sahara Desert, which has less cloud cover and therefore is more transparent to solar irradiance and lowers values in the south, where there are more cloud cover and abundant vegetation. Conclusion: Measured maximum and minimum temperatures in Nigeria are respectively 43.1°C at Yola (north-east part of Nigeria) and 10.2°C for Jos (north-central part of Nigeria). The least temperature variations were recorded for stations in the southern part of the country, while the largest variations were recorded in the north-central region of the country.


2019 ◽  
Vol 500 (1) ◽  
pp. 267-276 ◽  
Author(s):  
Aaron Micallef ◽  
Aggeliki Georgiopoulou ◽  
Andrew Green ◽  
Vittorio Maselli

AbstractThe sheared-passive margin offshore Durban (South Africa) is characterized by a narrow continental shelf and steep slope hosting numerous submarine canyons. Supply of sediment to the margin is predominantly terrigenous, dominated by discharge from several short but fast-flowing rivers. International Ocean Discovery Program Expedition 361 provides a unique opportunity to investigate the role of sea-level fluctuations on the sedimentation patterns and slope instability along the South African margin. We analysed >300 sediment samples and downcore variations in P-wave, magnetic susceptibility, bioturbation intensity and bulk density from site U1474, as well as regional seismic reflection profiles to: (1) document an increase in sand input since the Mid-Pliocene; (2) associate this change to a drop in sea-level and extension of subaerial drainage systems towards the shelf-edge; (3) demonstrate that slope instability has played a key role in the evolution of the South Africa margin facing the Natal Valley. Furthermore, we highlight how the widespread occurrence of failure events reflects the tectonic control on the morphology of the shelf and slope, as well as bottom-current scour and instability of fan complexes. This information is important to improve hazard assessment in a populated coastal region with growing offshore hydrocarbon activities.


1952 ◽  
Vol S6-II (7-9) ◽  
pp. 619-639
Author(s):  
Louis Glangeaud

Abstract Correlates the structure and evolution of the Atlas ranges of the Tell and Rif regions and presents a general structural interpretation of the north African coastal region. The Miocene thrusts in the south are local regional adjustments (of the fourth order) to second-order processes occurring farther to the north--compression of the Alps in upper Nummulitic time (Tertiary).


Oryx ◽  
1951 ◽  
Vol 1 (4) ◽  
pp. 191-191
Author(s):  
T. J. Steyn

Although scattered and greatly reduced in numbers, Hartmann's Zebras (form(s) of Mountain Zebra) still seem to occur over practically the whole mountainous coastal region of South-West Africa, west of the Namib, from the Orange River in the south to beyond the Cunene in the north.


Sign in / Sign up

Export Citation Format

Share Document