Characterization of DNA sequences constituting the terminal heterochromatin of the chicken Z chromosome

1996 ◽  
Vol 4 (6) ◽  
pp. 411-426 ◽  
Author(s):  
Tetsuya Hori ◽  
Yukiko Suzuki ◽  
Irina Solovei ◽  
Yasushi Saitoh ◽  
Nancy Hutchison ◽  
...  

1987 ◽  
Vol 13 (6) ◽  
pp. 609-619 ◽  
Author(s):  
A. V. Gudkov ◽  
O. B. Chernova ◽  
A. R. Kazarov ◽  
B. P. Kopnin


1987 ◽  
Vol 7 (5) ◽  
pp. 1776-1781
Author(s):  
M Fukui ◽  
T Yamamoto ◽  
S Kawai ◽  
F Mitsunobu ◽  
K Toyoshima

Results of previous studies have shown that a raf-related transforming DNA sequence is present in NIH 3T3 transformants that are derived from GL-5-JCK human glioblastoma DNA transfection. The transforming DNA was molecularly cloned by using cosmid vector pJB8 to determine its structure and origin. Analyses of selected clones revealed that the transforming DNA consisted of three portions of human DNA sequences, with the 3' half of the c-raf-1 gene as its middle portion. This raf region was about 20 kilobases long and contained exons 8 to 17 and the poly(A) addition site. RNA blot analysis showed that the raf-related transforming DNA was transcribed into 5.3-, 4.8-, and 2.5-kilobase mRNAs; the 2.5-kilobase transcript was thought to be the major transcript. Immunoprecipitation analyses revealed that a 44-kilodalton raf-related protein was specifically expressed in the NIH 3T3 transformants. The raf-related transforming DNA was considered to be activated when its amino-terminal sequence was truncated and the DNA was coupled with a foreign promoter sequence. On hybridization analysis of the original GL-5-JCK glioblastoma DNA, no rearrangement of c-raf-1 was detectable in the tumor DNA. The rearrangement of c-raf-1 may have occurred during transfection or may have been present in a small population of the original tumor cells as a result of tumor progression.



1985 ◽  
Vol 5 (11) ◽  
pp. 2887-2893
Author(s):  
M Neitz ◽  
J Carbon

A functional centromere located on a small DNA restriction fragment from Saccharomyces cerevisiae was identified as CEN14 by integrating centromere-adjacent DNA plus the URA3 gene by homologous recombination into the yeast genome and then by localizing the URA3 gene to chromosome XIV by standard tetrad analysis. DNA sequence analysis revealed that CEN14 possesses sequences (elements I, II, and III) that are characteristic of other yeast centromeres. Mitotic and meiotic analyses indicated that the CEN14 function resides on a 259-base-pair (bp) RsaI-EcoRV restriction fragment, containing sequences that extend only 27 bp to the right of the element I to III region. In conjunction with previous findings on CEN3 and CEN11, these results indicate that the specific DNA sequences required in cis for yeast centromere function are contained within a region about 150 bp in length.



Genes ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 517 ◽  
Author(s):  
Daniel García-Souto ◽  
Sandra Alonso-Rubido ◽  
Diana Costa ◽  
José Eirín-López ◽  
Emilio Rolán-Álvarez ◽  
...  

Periwinkles of the family Littorinidae (Children, 1834) are common members of seashore littoral communities worldwide. Although the family is composed of more than 200 species belonging to 18 genera, chromosome numbers have been described in only eleven of them. A molecular cytogenetic analysis of nine periwinkle species, the rough periwinkles Littorina arcana, L. saxatilis, and L. compressa, the flat periwinkles L. obtusata and L. fabalis, the common periwinkle L. littorea, the mangrove periwinkle Littoraria angulifera, the beaded periwinkle Cenchritis muricatus, and the small periwinkle Melarhaphe neritoides was performed. All species showed diploid chromosome numbers of 2n = 34, and karyotypes were mostly composed of metacentric and submetacentric chromosome pairs. None of the periwinkle species showed chromosomal differences between male and female specimens. The chromosomal mapping of major and minor rDNA and H3 histone gene clusters by fluorescent in situ hybridization demonstrated that the patterns of distribution of these DNA sequences were conserved among closely related species and differed among less related ones. All signals occupied separated loci on different chromosome pairs without any evidence of co-localization in any of the species.





1986 ◽  
Vol 138 (2) ◽  
pp. 966-973
Author(s):  
Shuji Mita ◽  
Shuichiro Maeda ◽  
Kazunori Shimada


1986 ◽  
Vol 72 (2) ◽  
pp. 207-210 ◽  
Author(s):  
M. Metzlaff ◽  
W. Troebner ◽  
F. Baldauf ◽  
R. Schlegel ◽  
J. Cullum


Sign in / Sign up

Export Citation Format

Share Document