z chromosome
Recently Published Documents


TOTAL DOCUMENTS

208
(FIVE YEARS 75)

H-INDEX

32
(FIVE YEARS 6)

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261918
Author(s):  
Anli Chen ◽  
Pengfei Liao ◽  
Qiongyan Li ◽  
Qiaoling Zhao ◽  
Mengjie Gao ◽  
...  

Yun7Ge is a giant egg mutant found in the silkworm variety Yun7. In comparison with the giant mutant Ge, the eggs of Yun7Ge are larger. The number of laid eggs and hatching rate of Yun7Ge are reduced, which is not conducive to reproduction. In this work, the target gene controlling giant egg trait is located on the Z chromosome and was determined through genetic analysis. Transcriptome results showed that phytanoyl-CoA dioxygenase domain-containing protein 1 (PHYHD1) on the Z chromosome was silenced, and the 25 chorion genes on chromosome 2 were remarkably downregulated. Sequence analysis showed that the 73.5 kb sequence including the PHYHD1 was replaced by a ~3.0 kb sequence. After knocking out the PHYHD1 by using CRISPR/Cas9, the chorion genes were significantly downregulated. Hence, the silencing of PHYHD1 leads to the downregulation of many chorion protein genes, thus directly causing giant eggs.


2021 ◽  
Author(s):  
Alexander Mackintosh ◽  
Dominik Laetsch ◽  
Tobias Baril ◽  
Robert Foster ◽  
Vlad Dincă ◽  
...  

The lesser marbled fritillary, Brenthis ino (Rottemburg, 1775), is a species of Palearctic butterfly. Male B. ino individuals have been reported to have between 12 and 14 pairs of chromosomes, a much reduced chromosome number than is typical in butterflies. Here we present a chromosome-level genome assembly for B. ino, as well as gene and transposable element annotations. The assembly is 411.8 Mb in span with contig and scaffold N50s of 9.6 and 29.5 Mb respectively. We also show evidence that the male individual from which we generated HiC data was heterozygous for a neo-Z chromosome, consistent with inheriting 14 chromosomes from one parent and 13 from the other. This genome assembly will be a valuable resource for studying chromosome evolution in Lepidoptera, as well as for comparative and population genomics more generally.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shengchao Ma ◽  
Hehe Liu ◽  
Jianmei Wang ◽  
Lei Wang ◽  
Yang Xi ◽  
...  

Sexual dimorphism of feather color is typical in mallards, in which drakes exhibit green head feathers, while females show dull head feather color. We showed that more melanosomes deposited in the males’ head’s feather barbules than females and further form a two-dimensional hexagonal lattice, which conferred the green feather coloration of drakes. Additionally, transcriptome analysis revealed that some essential melanin biosynthesis genes were highly expressed in feather follicles during the development of green feathers, contributing to melanin deposition. We further identified 18 candidate differentially expressed genes, which may affect the sharp color differences between the males’ head feathers, back feathers, and the females’ head feathers. TYR and TYRP1 genes are associated with melanin biosynthesis directly. Their expressions in the males’ head feather follicles were significantly higher than those in the back feather follicles and females’ head feather follicles. Most clearly, the expression of TYRP1 was 256 and 32 times higher in the head follicles of males than in those of the female head and the male back, respectively. Hence, TYR and TYRP1 are probably the most critical candidate genes in DEGs. They may affect the sexual dimorphism of head feather color by cis-regulation of some transcription factors and the Z-chromosome dosage effect.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3265
Author(s):  
Yuxuan Sun ◽  
Ying Zhu ◽  
Peng Cheng ◽  
Mengqian Zhang ◽  
Na Wang ◽  
...  

Ubiquitin ligase (E3) plays a versatile role in gonadal development and spermatogenesis in mammals, while its function in fish is little reported. In this study, a Z-chromosome linked ubiquitin ligase rchy1 in C. semilaevis (Cs-rchy1) was cloned and characterized. The full-length cDNA was composed of 1962 bp, including 551 bp 5′UTR, 736 bp 3′UTR, and 675 bp ORF encoding a 224-amino-acid (aa) protein. Cs-rchy1 was examined among seven different tissues and found to be predominantly expressed in gonads. In testis, Cs-rchy1 could be detected from 40 days post hatching (dph) until 3 years post hatching (yph), but there was a significant increase at 6 months post hatching (mph). In comparison, the expression levels in ovary were rather stable among different developmental stages. In situ hybridization showed that Cs-rchy1 was mainly localized in germ cells, that is, spermatid and spermatozoa in testis and stage I, II and III oocytes in ovary. In vitro RNA interference found that Cs-rchy1 knockdown resulted in the decline of sox9 and igf1 in ovarian cell line and down-regulation of cyp19a in the testicular cell line. These data suggested that Cs-rchy1 might participate in gonadal differentiation and gametogenesis, via regulating steroid hormone synthesis.


Author(s):  
Xindong Xu ◽  
Yifeng Wang ◽  
Qingtian Guan ◽  
Gangqiang Guo ◽  
Xinyu Yu ◽  
...  

Schistosomiasis is a neglected tropical disease of humans caused by blood flukes of the genus Schistosoma – the only dioecious parasitic flatworms. Although aspects of sex determination, differentiation and reproduction have been studied in some Schistosoma species, almost nothing is understood for Schistosoma japonicum - the causative agent of schistosomiasis japonica. This relates mainly to a lack of high-quality genomic and transcriptomic resources for this species. As current draft genomes for S. japonicum are highly fragmented, we assembled here a chromosome-level reference genome (seven autosomes, the Z-chromosome and partial W-chromosome), achieving a substantially enhanced gene annotation. Utilising this genome, we discovered that the sex chromosomes of S. japonicum and its congener S. mansoni independently suppressed recombination during evolution, forming four and two ‘strata’, respectively. By exploring the W-chromosome and sex-specific transcriptomes, we identified 35 W-linked genes and 257 female-preferentially transcribed genes (FTGs) and identified a signature for sex determination and differentiation in S. japonicum. These FTGs cluster within autosomes or the Z-chromosome and exhibit a highly dynamic transcription profile during the pairing of female and male schistosomules (advanced juveniles), representing a critical phase for the maturation of the female worms, suggesting distinct layers of regulatory control of gene transcription at this stage of development. Collectively, these data provide a valuable resource for further functional genomic characterisation of S. japonicum, shed light on the evolution of sex chromosomes in this highly virulent human blood fluke and provide a pathway to identify novel targets for development of intervention tools against schistosomiasis.


2021 ◽  
Author(s):  
Rose M.H. Driscoll ◽  
Felix E.G. Beaudry ◽  
Elissa J Cosgrove ◽  
Reed Bowman ◽  
John W Fitzpatrick ◽  
...  

Sex-biased demography, including sex-biased survival or migration, can impact allele frequency changes across the genome. In particular, we can expect different patterns of genetic variation on autosomes and sex chromosomes due to sex-specific differences in life histories, as well as differences in effective population size, transmission modes, and the strength and mode of selection. Here, we demonstrate the role that sex differences in life history played in shaping short-term evolutionary dynamics across the genome. We used a 25-year pedigree and genomic dataset from a long-studied population of Florida Scrub-Jays (Aphelocoma coerulescens) to directly characterize the relative roles of sex-biased demography and inheritance in shaping genome-wide allele frequency trajectories. We used gene dropping simulations to estimate individual genetic contributions to future generations and to model drift and immigration on the known pedigree. We quantified differential expected genetic contributions of males and females over time, showing the impact of sex-biased dispersal in a monogamous system. Due to female-biased dispersal, more autosomal variation is introduced by female immigrants. However, due to male-biased transmission, more Z variation is introduced by male immigrants. Finally, we partitioned the proportion of variance in allele frequency change through time due to male and female contributions. Overall, most allele frequency change is due to variance in survival and births. Males and females have similar contributions to autosomal allele frequency change, but males have higher contributions to allele frequency change on the Z chromosome. Our work shows the importance of understanding sex-specific demographic processes in accounting for genome-wide allele frequency change in wild populations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amy J. Withers ◽  
Jolanda de Boer ◽  
Gilson Chipabika ◽  
Lei Zhang ◽  
Judith A. Smith ◽  
...  

AbstractUnderstanding the population structure and movements of the invasive fall armyworm (FAW, Spodoptera frugiperda) is important as it can help mitigate crop damage, and highlight areas at risk of outbreaks or evolving insecticide resistance. Determining population structure in invasive FAW has been a challenge due to genetic mutations affecting the markers traditionally used for strain and haplotype identification; mitochondrial cytochrome oxidase I (COIB) and the Z-chromosome-linked Triosephosphate isomerase (Tpi). Here, we compare the results from COIB and Tpi markers with highly variable repeat regions (microsatellites) to improve our understanding of FAW population structure in Africa. There was very limited genetic diversity using the COIB marker, whereas using the TpiI4 marker there was greater diversity that showed very little evidence of genetic structuring between FAW populations across Africa. There was greater genetic diversity identified using microsatellites, and this revealed a largely panmictic population of FAW alongside some evidence of genetic structuring between countries. It is hypothesised here that FAW are using long-distance flight and prevailing winds to frequently move throughout Africa leading to population mixing. These approaches combined provide important evidence that genetic mixing between invasive FAW populations may be more common than previously reported.


2021 ◽  
Author(s):  
Charles Christian Riis Hansen ◽  
Kristen M. Westfall ◽  
Snaebjörn Pálsson

Abstract BackgroundWhole genomes are commonly assembled into a collection of scaffolds and often lack annotations of autosomes, sex chromosomes, and organelle genomes (i.e., mitochondrial and chloroplast). As these chromosome types differ in effective population size and can have highly disparate evolutionary histories, it is imperative to take this information into account when analysing genomic variation. Here we assessed the accuracy of four methods for identifying the homogametic sex chromosome in a small population using two whole genome sequences (WGS) and 133 RAD sequences of white-tailed eagles (Haliaeetus albicilla): i) difference in read depth per scaffold in a male and a female, ii) heterozygosity per scaffold in a male and a female, iii) mapping to a reference genome of a related species (chicken) with identified sex chromosomes, and iv) analysis of SNP-loadings from a principal components analysis (PCA), based on the low-depth RADseq data. ResultsThe best performing approach was the reference mapping (method iii), which identified 98.12% of the expected homogametic sex chromosome (Z). The read depth per scaffold (method i) identified 86.41% of the homogametic sex chromosome with few false positives. The SNP-loading scores (method iv) found 78.6% of the Z-chromosome and had a false positive discovery rate of more than 10%. The heterozygosity per scaffold (method ii) did not provide clear results due to a lack of diversity in both the Z and autosomal chromosomes, and potential interference from the heterogametic sex chromosome (W). The evaluation of these methods also revealed 10 Mb of likely PAR and gametologous regions.ConclusionIdentification of the homogametic sex chromosome in a small population is best accomplished by reference mapping or examining read depth differences between sexes.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1459
Author(s):  
Martin Andres Estermann ◽  
Andrew Thomas Major ◽  
Craig Allen Smith

As in other vertebrates, avian testes are the site of spermatogenesis and androgen production. The paired testes of birds differentiate during embryogenesis, first marked by the development of pre-Sertoli cells in the gonadal primordium and their condensation into seminiferous cords. Germ cells become enclosed in these cords and enter mitotic arrest, while steroidogenic Leydig cells subsequently differentiate around the cords. This review describes our current understanding of avian testis development at the cell biology and genetic levels. Most of this knowledge has come from studies on the chicken embryo, though other species are increasingly being examined. In chicken, testis development is governed by the Z-chromosome-linked DMRT1 gene, which directly or indirectly activates the male factors, HEMGN, SOX9 and AMH. Recent single cell RNA-seq has defined cell lineage specification during chicken testis development, while comparative studies point to deep conservation of avian testis formation. Lastly, we identify areas of future research on the genetics of avian testis development.


Evolution ◽  
2021 ◽  
Author(s):  
Andrew J. Mongue ◽  
Megan E. Hansen ◽  
James R. Walters

Sign in / Sign up

Export Citation Format

Share Document