On the convergence in law of almost all sums of independent random variables

1995 ◽  
Vol 76 (1) ◽  
pp. 2110-2117
Author(s):  
A. N. Chuprunov
1995 ◽  
Vol 118 (3) ◽  
pp. 527-542 ◽  
Author(s):  
A. C. Offord

SummaryThis is a study of entire functions whose coefficients are independent random variables. When the space of such functions is symmetric it is shown that independence of the coefficients alone is sufficient to ensure that almost all such functions will, for large z, be large except in certain small neighbourhoods of the zeros called pits. In each pit the function takes every not too large value and these pits have a certain uniform distribution.


1975 ◽  
Vol 12 (04) ◽  
pp. 673-683
Author(s):  
G. R. Grimmett

I show that the sumof independent random variables converges in distribution when suitably normalised, so long as theXksatisfy the following two conditions:μ(n)= E |Xn|is comparable withE|Sn| for largen,andXk/μ(k) converges in distribution. Also I consider the associated birth processX(t) = max{n:Sn≦t} when eachXkis positive, and I show that there exists a continuous increasing functionv(t) such thatfor some variableYwith specified distribution, and for almost allu. The functionv, satisfiesv(t) =A(1 +o(t)) logt. The Markovian birth process with parameters λn= λn, where 0 < λ < 1, is an example of such a process.


Author(s):  
Matthias Jakob ◽  
A. C. Offord

SynopsisThis is a study of the family of power series where Σ αnZn has unit radius of convergence and the εn are independent random variables taking the values ±1 with equal probability. It is shown that ifthen almost all these power series take every complex value infinitely often in the unit disk.


1975 ◽  
Vol 12 (4) ◽  
pp. 673-683 ◽  
Author(s):  
G. R. Grimmett

I show that the sum of independent random variables converges in distribution when suitably normalised, so long as the Xk satisfy the following two conditions: μ(n)= E |Xn| is comparable with E |Sn| for large n, and Xk/μ(k) converges in distribution. Also I consider the associated birth process X(t) = max{n: Sn ≦ t} when each Xk is positive, and I show that there exists a continuous increasing function v(t) such that for some variable Y with specified distribution, and for almost all u. The function v, satisfies v (t) = A (1 + o (t)) log t. The Markovian birth process with parameters λn = λn, where 0 < λ < 1, is an example of such a process.


2020 ◽  
pp. 9-13
Author(s):  
A. V. Lapko ◽  
V. A. Lapko

An original technique has been justified for the fast bandwidths selection of kernel functions in a nonparametric estimate of the multidimensional probability density of the Rosenblatt–Parzen type. The proposed method makes it possible to significantly increase the computational efficiency of the optimization procedure for kernel probability density estimates in the conditions of large-volume statistical data in comparison with traditional approaches. The basis of the proposed approach is the analysis of the optimal parameter formula for the bandwidths of a multidimensional kernel probability density estimate. Dependencies between the nonlinear functional on the probability density and its derivatives up to the second order inclusive of the antikurtosis coefficients of random variables are found. The bandwidths for each random variable are represented as the product of an undefined parameter and their mean square deviation. The influence of the error in restoring the established functional dependencies on the approximation properties of the kernel probability density estimation is determined. The obtained results are implemented as a method of synthesis and analysis of a fast bandwidths selection of the kernel estimation of the two-dimensional probability density of independent random variables. This method uses data on the quantitative characteristics of a family of lognormal distribution laws.


2014 ◽  
Vol 59 (2) ◽  
pp. 553-562 ◽  
Author(s):  
Agnieszka Surowiak ◽  
Marian Brożek

Abstract Settling velocity of particles, which is the main parameter of jig separation, is affected by physical (density) and the geometrical properties (size and shape) of particles. The authors worked out a calculation algorithm of particles settling velocity distribution for irregular particles assuming that the density of particles, their size and shape constitute independent random variables of fixed distributions. Applying theorems of probability, concerning distributions function of random variables, the authors present general formula of probability density function of settling velocity irregular particles for the turbulent motion. The distributions of settling velocity of irregular particles were calculated utilizing industrial sample. The measurements were executed and the histograms of distributions of volume and dynamic shape coefficient, were drawn. The separation accuracy was measured by the change of process imperfection of irregular particles in relation to spherical ones, resulting from the distribution of particles settling velocity.


1965 ◽  
Vol 2 (02) ◽  
pp. 352-376 ◽  
Author(s):  
Samuel Karlin ◽  
James McGregor

In the Ehrenfest model with continuous time one considers two urns and N balls distributed in the urns. The system is said to be in stateiif there areiballs in urn I, N −iballs in urn II. Events occur at random times and the time intervals T between successive events are independent random variables all with the same negative exponential distributionWhen an event occurs a ball is chosen at random (each of theNballs has probability 1/Nto be chosen), removed from its urn, and then placed in urn I with probabilityp, in urn II with probabilityq= 1 −p, (0 &lt;p&lt; 1).


1991 ◽  
Vol 14 (2) ◽  
pp. 381-384
Author(s):  
Rohan Hemasinha

LetEbe a Banach space, and let(Ω,ℱ,P)be a probability space. IfL1(Ω)contains an isomorphic copy ofL1[0,1]then inLEP(Ω)(1≤P<∞), the closed linear span of every sequence of independent,Evalued mean zero random variables has infinite codimension. IfEis reflexive orB-convex and1<P<∞then the closed(in LEP(Ω))linear span of any family of independent,Evalued, mean zero random variables is super-reflexive.


Sign in / Sign up

Export Citation Format

Share Document