Test-fitting on adsorption isotherms of organic pollutants from waste waters on activated carbon

1998 ◽  
Vol 229 (1-2) ◽  
pp. 105-110 ◽  
Author(s):  
A. Meghea ◽  
H. H. Rehner ◽  
I. Peleanu ◽  
R. Mihalache
2000 ◽  
Vol 32 (3) ◽  
pp. 401-411 ◽  
Author(s):  
Jamal Benkhedda ◽  
Jean-Noël Jaubert ◽  
Danielle Barth ◽  
Laurent Perrin ◽  
Michel Bailly

2013 ◽  
Vol 68 (6) ◽  
pp. 1370-1376 ◽  
Author(s):  
M. Grivé ◽  
D. García ◽  
C. Domènech ◽  
L. Richard ◽  
I. Rojo ◽  
...  

Granular activated carbon (GAC) is commonly used as adsorbent in water treatment plants given its high capacity for retaining organic pollutants in aqueous phase. The current knowledge on GAC behaviour is essentially empirical, and no quantitative description of the chemical relationships between GAC surface groups and pollutants has been proposed. In this paper, we describe a quantitative model for the adsorption of atrazine onto GAC surface. The model is based on results of potentiometric titrations and three types of adsorption experiments which have been carried out in order to determine the nature and distribution of the functional groups on the GAC surface, and evaluate the adsorption characteristics of GAC towards atrazine. Potentiometric titrations have indicated the existence of at least two different families of chemical groups on the GAC surface, including phenolic- and benzoic-type surface groups. Adsorption experiments with atrazine have been satisfactorily modelled with the geochemical code PhreeqC, assuming that atrazine is sorbed onto the GAC surface in equilibrium (log Ks = 5.1 ± 0.5). Independent thermodynamic calculations suggest a possible adsorption of atrazine on a benzoic derivative. The present work opens a new approach for improving the adsorption capabilities of GAC towards organic pollutants by modifying its chemical properties.


2011 ◽  
Vol 56 (3) ◽  
pp. 361-367 ◽  
Author(s):  
Awaludin Martin ◽  
Wai Soong Loh ◽  
Kazi Afzalur Rahman ◽  
Kyaw Thu ◽  
Bambang Surayawan ◽  
...  

2017 ◽  
Vol 6 (1) ◽  
pp. 1 ◽  
Author(s):  
Mochamad Lutfi Firdaus ◽  
Noli Krisnanto ◽  
Wiwit Alwi ◽  
Ronald Muhammad ◽  
Muhamad Allan Serunting

Synthetic dye wastewater from textile industries is characterized by strong color, high temperature, variable pH and high chemical oxygen demand (COD). The strong color of wastewater affects aesthetic and water transparency of water bodies. The metabolites could be toxic to aquatic biota and posing a potential hazard to human health. Eventually, it will cause severe environmental problems. One of method that has advantages in term of simplicity to remove synthetic dyes is adsorption. Environmentally benign and low-cost materials to make adsorbent are biomass-based materials. Two different biomaterial wastes of rice straw and oil palm midrib were used in this study to develop activated carbon adsorbents. These adsorbents were applied for the removal of Naphtol AS-G dye in aqueous solution. The effects of solution pH, adsorbents masses and contact time on dye adsorption were evaluated based on batch experiments. Removal of dye can be achieved within 60 minutes at a wide pH range starting from 4 to 8. At lower pH, synthetic dye removal was decreasing probably due to protonation of adsorbent’s active sites. The adsorption isotherms based on Langmuir and Freundlich models were analyzed. The isotherms analysis indicated that the adsorption by rice straw and oil palm can be represented by Langmuir and Freundlich isotherm model, respectively. Adsorption isotherms of Naphtol AS-G onto activated carbon are favorable with high adsorption capacity for both biomaterials. The mechanisms of color removal by activated carbon involved chemical and physical adsorption, in accordance with both the Langmuir and Freundlich models. The calculated maximum dye adsorption capacities onto rice straw and oil palm midrib activated carbon were 55.86 and 69.44 mg/g, respectively. Adsorption using biomass-based activated carbon offers a good technique for textile wastewater treatment as it could remove up to 95% of the color intensity besides reducing other pollutants such as COD, nitrate and phosphate. 


Sign in / Sign up

Export Citation Format

Share Document