Adsorption isotherms ofm-xylene on activated carbon: measurements and correlation with different models

2000 ◽  
Vol 32 (3) ◽  
pp. 401-411 ◽  
Author(s):  
Jamal Benkhedda ◽  
Jean-Noël Jaubert ◽  
Danielle Barth ◽  
Laurent Perrin ◽  
Michel Bailly
2011 ◽  
Vol 56 (3) ◽  
pp. 361-367 ◽  
Author(s):  
Awaludin Martin ◽  
Wai Soong Loh ◽  
Kazi Afzalur Rahman ◽  
Kyaw Thu ◽  
Bambang Surayawan ◽  
...  

2017 ◽  
Vol 6 (1) ◽  
pp. 1 ◽  
Author(s):  
Mochamad Lutfi Firdaus ◽  
Noli Krisnanto ◽  
Wiwit Alwi ◽  
Ronald Muhammad ◽  
Muhamad Allan Serunting

Synthetic dye wastewater from textile industries is characterized by strong color, high temperature, variable pH and high chemical oxygen demand (COD). The strong color of wastewater affects aesthetic and water transparency of water bodies. The metabolites could be toxic to aquatic biota and posing a potential hazard to human health. Eventually, it will cause severe environmental problems. One of method that has advantages in term of simplicity to remove synthetic dyes is adsorption. Environmentally benign and low-cost materials to make adsorbent are biomass-based materials. Two different biomaterial wastes of rice straw and oil palm midrib were used in this study to develop activated carbon adsorbents. These adsorbents were applied for the removal of Naphtol AS-G dye in aqueous solution. The effects of solution pH, adsorbents masses and contact time on dye adsorption were evaluated based on batch experiments. Removal of dye can be achieved within 60 minutes at a wide pH range starting from 4 to 8. At lower pH, synthetic dye removal was decreasing probably due to protonation of adsorbent’s active sites. The adsorption isotherms based on Langmuir and Freundlich models were analyzed. The isotherms analysis indicated that the adsorption by rice straw and oil palm can be represented by Langmuir and Freundlich isotherm model, respectively. Adsorption isotherms of Naphtol AS-G onto activated carbon are favorable with high adsorption capacity for both biomaterials. The mechanisms of color removal by activated carbon involved chemical and physical adsorption, in accordance with both the Langmuir and Freundlich models. The calculated maximum dye adsorption capacities onto rice straw and oil palm midrib activated carbon were 55.86 and 69.44 mg/g, respectively. Adsorption using biomass-based activated carbon offers a good technique for textile wastewater treatment as it could remove up to 95% of the color intensity besides reducing other pollutants such as COD, nitrate and phosphate. 


2020 ◽  
Vol 82 (4) ◽  
pp. 651-662
Author(s):  
Kods Oueslati ◽  
Eder C. Lima ◽  
Fakher Ayachi ◽  
Mariene R. Cunha ◽  
Abdelmottaleb Ben Lamine

Abstract The adsorption isotherms of Reactive Red 120 (RR-120) on Brazilian pine-fruit shell activated carbon, at six temperatures (298, 303, 308, 313, 318 and 323 K) and pH = 6, were determined and interpreted using a double layer model with one energy. A statistical physics treatment established the formulation of this model. Steric and energetic parameters related to the adsorption process, such as the number of adsorbed molecules per site, the receptor sites density and the concentration at half-saturation, have been considered. Thermodynamic potential functions such as entropy, internal energy and Gibbs free enthalpy are analyzed, and the choice of the models is based on assumptions in correlation with experimental conditions. By numerical fitting, the investigated parameters were deduced. The theoretical expressions provide a good understanding and interpretation of the adsorption isotherms at the microscopic level. We believe that our work contributes to new theoretical insights on the dye adsorption in order to know the physical nature of the adsorption process.


2019 ◽  
Vol 8 (1) ◽  
pp. 408-415 ◽  
Author(s):  
Wenhai Hu ◽  
Song Cheng ◽  
Hongying Xia ◽  
Libo Zhang ◽  
Xin Jiang ◽  
...  

Abstract The waste phenolic resin was utilized as the raw material to prepare activated carbon (AC) used KOH as the activating agent via microwave heating. The phenolic resin was carbonized at 500°C and then performed with a KOH/Char ratio of 4 and microwave power of 700 W for a duration of 15 min. The physic-chemical characteristics of the AC were characterized by N2 adsorption instrument, FTIR, SEM and TEM. The BET surface area and pore volume of AC were found to be 4269 m2/g and 2.396 ml/g, respectively. The activation process to generate such a phenomenally high surface area of the AC has little reported in open literatures and could pave way for preparation adsorbents that are far superior to the currently marketed adsorbents. The methylene blue (MB) was used as the model to assess its suitability to dye wastewater treatment. Towards this, the MB adsorption isotherms were conducted at three different temperatures and tested with different adsorption isotherm models. The adsorption isotherms could be modeled using Langmuir isotherm. While the kinetics could be used the pseudo-second order kinetics to describe. Thermodynamic results demonstrated that the adsorption process was a spontaneous, as well as an endothermic.


1996 ◽  
Vol 13 (5) ◽  
pp. 341-354
Author(s):  
R. Mészáros ◽  
M. Nagy ◽  
G. Veress

Adsorption isotherms for the adsorption of 1-propanol and 2-propanol from dilute aqueous solution on to two types of activated carbon were presented at fixed different initial concentrations. The confidence limits for the specific excess relative to these fixed initial concentrations were also given. The high precision calculation of these error terms was based on the model description of the equilibrium concentration versus sorbent concentration curves discussed previously. The Dubinin–Radushkevich representation of the adsorption data was presented and tested for the same adsorption data. It appears that in some cases the adsorbed amount as expressed by the specific excess depends not only on the equilibrium concentration of the supernatant solution but also on the initial concentration and sorbent concentration. The so-called characteristic isotherms were also calculated in order to compare the various adsorption systems.


Sign in / Sign up

Export Citation Format

Share Document