Nomogram for determining the active pressure of a cohesive soil against the vertical rear face of a retaining wall

1977 ◽  
Vol 11 (4) ◽  
pp. 407-408
Author(s):  
N. K. Krasnov
2013 ◽  
Vol 353-356 ◽  
pp. 895-900 ◽  
Author(s):  
Xin Rong Liu ◽  
Ming Xi Ou ◽  
Xin Yang

In view of the shortage of using classical earth pressure theories to calculating passive earth pressure of cohesive soil on retaining wall under complex conditions. Based on the planar slip surface and the back of retaining wall was inclined and rough assumption, the calculation model of passive earth pressure of cohesive backfill under uniformly distrubuted loads was presented, in which the upper bound limit analysis was adopted. Meanwhile it was proven that the prevailing classical Rankine’s earth pressure theory was a special example simlified under the condition of its assumptions. For it’s difficult to determine the angle of slip surface , a relatively simple method for calculating the angle was proposed by example. And the influence of angle of wall back , friction angle of the interface between soil and retaining wall, cohesion force and internal friction angle of backfill soil to planar sliding surface and passive earth pressure were analyzed. Some good calculation results were achieved, these analysis can provide useful reference for the design of retaining wall.


2018 ◽  
Vol 9 (2) ◽  
pp. 6 ◽  
Author(s):  
A. Gupta ◽  
V. Yadav ◽  
V. A. Sawant ◽  
R. Agarwal

Design of retaining walls under seismic conditions is based on the calculation of seismic earth pressurebehind the wall. To calculate the seismic active earth pressure behind the vertical retaining wall, many researchers reportanalytical solutions using the pseudo-static approach for both cohesionless and cohesive soil backfill. Design charts havebeen presented for the calculation of seismic active earth pressure behind vertical retaining walls in the non-dimensionalform. For inclined retaining walls, the analytical solutions for the calculation of seismic active earth pressure as well as thedesign charts (in non-dimensional form) have been reported in few studies for c-ϕ soil backfill. One analytical solution forthe calculation of seismic active earth pressure behind inclined retaining walls by Shukla (2015) is used in the present studyto obtain the design charts in non-dimensional form. Different field parameters related with wall geometry, seismic loadings,tension cracks, soil backfill properties, surcharge and wall friction are used in the present analysis. The present study hasquantified the effect of negative and positive wall inclination as well as the effect of soil cohesion (c), angle of shearingresistance (ϕ), surcharge loading (q) and the horizontal and vertical seismic coefficient (kh and kv) on seismic active earthpressure with the help of design charts for c-ϕ soil backfill. The design charts presented here in non-dimensional form aresimple to use and can be implemented by field engineers for design of inclined retaining walls under seismic conditions. Theactive earth pressure coefficients for cohesionless soil backfill achieved from the present study are validated with studiesreported in the literature.


Vestnik MGSU ◽  
2015 ◽  
pp. 61-72
Author(s):  
Vadim Grigor’evich Ofrikhter ◽  
Yan Vadimovich Ofrikhter

Natural non-treated sand reinforced with randomly oriented short polypropylene fibers of 12 mm in length was tested to determine creep characteristics. This study is a part of the research aimed at encouraging fibrosand (FRS) application in subsoils, embankments and retaining wall constructions. Fiber content was accounted for 0.93 %. Twin specimens were put to creep tests (1-D compression) using the two curve method. The test results were analyzed and checked with the use of ageing, hardening and hereditary creep theories. On the basis of approximation of the test results the creep deformation equation at constant stress for tested fibrosand was obtained. The assessment of fibrosand secondary compression was carried out by the FORE method. As a result, the value of the void ratio by the end of the secondary compression had been eu=0.7041. For determination of the beginning of the secondary compression the rate equation was superimposed on the empirical curve. The point of the graph divergence is the beginning of the secondary compression process. The secondary compression had begun by the time moment being equal to 9360 min. The void ratio by the beginning of the secondary compression had amounted to 0.70574. Fibrosand is a specific type of improved soil relating to so-called pseudo-cohesive soil. This type of soil is characterized by cohesion like cohesive soils, but, at the same time, by the filtration coefficient of about 1 m per day like non-cohesive soils. Pseudo-cohesive soil testing helps to understand the distinctive features of the stress-strain state of this kind of materials. Municipal solid waste also relates to them.


2019 ◽  
Vol 281 ◽  
pp. 02008
Author(s):  
Hicham Alhajj Chehade ◽  
Daniel Dias ◽  
Marwan Sadek ◽  
Fadi Hage Chehade ◽  
Orianne Jenck

Assessment of internal seismic stability of geosynthetic reinforced cohesive soil retaining walls with likelihood for developing cracks in the failure mechanism is typically done with the limit equilibrium method. However, in this paper, the kinematic theorem of limit analysis combined with the discretization method are used to implement the crack formation in the collapse mechanism in the internal seismic assessment of geosynthetic reinforced soil retaining walls within the framework of the pseudo-static approach. The presence of the crack leads to an increase of the required reinforcement strength that prevent the failure of the structure.


1996 ◽  
Vol 33 (5) ◽  
pp. 696-704 ◽  
Author(s):  
A Porbaha ◽  
D J Goodings

When on-site soil is not granular, substantial cost savings can be achieved if a stable, steeply sloped, reinforced retaining system, backfilled with on-site fill can be sustituted for a vertical retaining wall with granular fill. Centrifuge modeling was used in this work to investigate the failure and prefailure behaviour of 14 reduced-scale geotextile-reinforced steep model slopes of 45, 63.4, 71.6°, backfilled with cohesive soil and constructed on either firm or rigid foundations. The overall performance of model slopes on firm foundations was found to be better than that of similar models on rigid foundations. A stability analysis, using the Bishop simplified method incorporating reinforcement, was found to be a good predictor of the behaviour of models. Key words: reinforced soil, centrifuge modeling, geotextile, retaining structure, slope stability.


2013 ◽  
Vol 790 ◽  
pp. 410-413
Author(s):  
Jian Ming Zhu ◽  
Qi Zhao

The earth pressure behind inclined wall considering the soil arching effects which was decided by two factors, the coefficient and average vertical stress, was necessary to research. Based on the analysis of stress state behind the retaining wall, the unified solution of active pressure and passive pressure was derived and was used to calculate both the magnitude and point of application. According to examples, as the angle of inclined retaining wall increasing which was signifying by , the arching effects would be also increasing which the soil was in the passive limit and be falling which the soil was in the active limit.


Sign in / Sign up

Export Citation Format

Share Document