Relation of cerebral blood flow to neuronal activity in rats with different susceptibilities to emotional stress as a predictor of cerebral ischemia severity

1994 ◽  
Vol 118 (4) ◽  
pp. 1061-1064
Author(s):  
I. V. Gannushkina ◽  
A. L. Antelava ◽  
M. V. Baranchikova
2015 ◽  
Vol 35 (6) ◽  
pp. 883-887 ◽  
Author(s):  
Francisco Fernandez-Klett ◽  
Josef Priller

Pericytes are mural cells with contractile properties. Here, we provide evidence that microvascular pericytes modulate cerebral blood flow in response to neuronal activity (‘functional hyperemia’). Besides their role in neurovascular coupling, pericytes are responsive to brain damage. Cerebral ischemia is associated with constrictions and death of capillary pericytes, followed by fibrotic reorganization of the ischemic tissue. The data suggest that precapillary arterioles and capillaries are major sites of hemodynamic regulation in the brain.


1996 ◽  
Vol 8 (3) ◽  
pp. 275-278 ◽  
Author(s):  
Akifumi Suzuki ◽  
Hiromi Nishimura ◽  
Kimio Yoshioka ◽  
Masaaki Lwase ◽  
Nobuyuki Yasui ◽  
...  

2006 ◽  
Vol 34 (02) ◽  
pp. 351-361 ◽  
Author(s):  
Ching-Liang Hsieh ◽  
Qwang-Yuen Chang ◽  
I-hsin Lin ◽  
Jaung-Geng Lin ◽  
Chung-Hsiang Liu ◽  
...  

Electroacupuncture (EA) is widely used to treat disorders of the nervous system, such as stroke. The aim of the present study was to investigate the effect of EA on cerebral blood flow (CBF) in cerebral ischemic rats. We developed an animal model of cerebral ischemia (CI) by occluding the blood flow of both common carotid arteries in Sprague-Dawley (SD) rats; 2 or 15 Hz EA was applied to both Zusanli acupoints. The levels of nitric oxide (NO) in the peripheral blood and amounts of calcitonin gene-related peptide (CGRP) in the cerebral cortex and thalamus were measured. In addition, L-N (G)-nitro arginine methyl ester (L-NAME) was used to measure the changes in CBF induced by EA in rats with and without CI. The results indicated that both 2 and 15 Hz EA increase the mean CBF in rats with and without CI. However, neither 2 nor 15 Hz EA induced changes in levels of NO in peripheral blood or changes in CGRP levels in cerebral cortex and thalamus. In addition, L-NAME did not change the increase in CBF. We concluded that both 2 and 15 Hz EA at both Zusanli acupoints induced the increase of CBF in rats with and without CI. Whether the effect of EA is related to NO or CGRP will be investigated in a future study.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Rajat Dhar ◽  
Hemant Misra ◽  
Michael Diringer

Introduction: Sanguinate is a dual-action oxygen transfer and carbon monoxide-releasing agent with efficacy in animal models of focal brain ischemia and established safety in health volunteers. We performed a dose-escalation study in subarachnoid hemorrhage (SAH) patients at risk for delayed cerebral ischemia (DCI) to evaluate tolerability and explore efficacy in improving cerebral blood flow (CBF) and flow-metabolism balance to vulnerable brain regions. Methods: 12 subjects were studied over three dose tiers: 160mg/kg, 240 mg/kg, and 320 mg/kg, with close safety evaluation prior to proceeding to higher doses. After baseline 15 O-PET measurement of global and regional CBF and oxygen extraction fraction (OEF), Sanguinate was infused over two hours; PET was repeated immediately after and again at 24-hours. Vulnerable brain regions were defined as those with baseline OEF ≥ 0.5. Results: Sanguinate infusion resulted in a significant but transient rise in mean arterial pressure (115±15 to 127±13 mm Hg) that was not dose-dependent. No adverse physiologic or clinical effects were observed with infusion at any dose. Global CBF did not rise significantly after Sanguinate (42.6±7 to 45.9±9 ml/100g/min, p=0.18). However, in the 28% of regions classified as vulnerable, Sanguinate resulted in a significant rise in CBF (42.2±11 to 51.2±18) and reduction in OEF (0.6±0.1 to 0.5±0.11, both p<0.001). The increase in regional CBF was only seen with the two higher doses but OEF improved in all tiers. However, response was attenuated at 24-hours. Conclusions: We safely administered a novel oxygen transport and vasodilating agent to a cohort of patients with SAH. Sanguinate infusion appeared to improve CBF and flow-metabolism balance in vulnerable brain regions and warrants further study in those at-risk for DCI. Higher or repeat dosing may be required for sustained efficacy.


2011 ◽  
pp. 3537-3562 ◽  
Author(s):  
Caroline C. Tan ◽  
Vini G. Khurana ◽  
Eduardo E. Benarroch ◽  
Fredric B. Meyer

Sign in / Sign up

Export Citation Format

Share Document