An explicit tensor expression for the fundamental solutions of a bimaterial space problem

1997 ◽  
Vol 18 (4) ◽  
pp. 331-340 ◽  
Author(s):  
Chen Mengcheng ◽  
Tang Renji
2012 ◽  
Vol 12 (1) ◽  
pp. 193-225 ◽  
Author(s):  
N. Anders Petersson ◽  
Björn Sjögreen

AbstractWe develop a stable finite difference approximation of the three-dimensional viscoelastic wave equation. The material model is a super-imposition of N standard linear solid mechanisms, which commonly is used in seismology to model a material with constant quality factor Q. The proposed scheme discretizes the governing equations in second order displacement formulation using 3N memory variables, making it significantly more memory efficient than the commonly used first order velocity-stress formulation. The new scheme is a generalization of our energy conserving finite difference scheme for the elastic wave equation in second order formulation [SIAM J. Numer. Anal., 45 (2007), pp. 1902-1936]. Our main result is a proof that the proposed discretization is energy stable, even in the case of variable material properties. The proof relies on the summation-by-parts property of the discretization. The new scheme is implemented with grid refinement with hanging nodes on the interface. Numerical experiments verify the accuracy and stability of the new scheme. Semi-analytical solutions for a half-space problem and the LOH.3 layer over half-space problem are used to demonstrate how the number of viscoelastic mechanisms and the grid resolution influence the accuracy. We find that three standard linear solid mechanisms usually are sufficient to make the modeling error smaller than the discretization error.


1975 ◽  
Vol 67 (4) ◽  
pp. 787-815 ◽  
Author(s):  
Allen T. Chwang ◽  
T. Yao-Tsu Wu

The present study further explores the fundamental singular solutions for Stokes flow that can be useful for constructing solutions over a wide range of free-stream profiles and body shapes. The primary singularity is the Stokeslet, which is associated with a singular point force embedded in a Stokes flow. From its derivatives other fundamental singularities can be obtained, including rotlets, stresslets, potential doublets and higher-order poles derived from them. For treating interior Stokes-flow problems new fundamental solutions are introduced; they include the Stokeson and its derivatives, called the roton and stresson.These fundamental singularities are employed here to construct exact solutions to a number of exterior and interior Stokes-flow problems for several specific body shapes translating and rotating in a viscous fluid which may itself be providing a primary flow. The different primary flows considered here include the uniform stream, shear flows, parabolic profiles and extensional flows (hyper-bolic profiles), while the body shapes cover prolate spheroids, spheres and circular cylinders. The salient features of these exact solutions (all obtained in closed form) regarding the types of singularities required for the construction of a solution in each specific case, their distribution densities and the range of validity of the solution, which may depend on the characteristic Reynolds numbers and governing geometrical parameters, are discussed.


Author(s):  
I Pérez-Arjona ◽  
L Godinho ◽  
V Espinosa

Abstract The method of fundamental solutions has been applied to evaluate the influence of fish models geometrical features on the target strength (TS) directivity and TS frequency response of swimbladdered fish. Simplified models were considered for two fish species: gilt-head sea bream (Sparus aurata, Linnaeus 1758) and Atlantic salmon (Salmo salar, Linnaeus 1758), and different geometrical details of their morphology were studied, such as backbone presence, and its curvature or the inclusion of vertebrae modulation. Swimbladder shape and tilt, together with the inclusion of backbone (and its realistic curvature) for dorsal measurements were the most important features for proper estimation of mean TS. The estimation of mean TS is considered including the effect of fish tilt, the echosounder frequency, and the fish-to-transducer distance.


2003 ◽  
Vol 356 (7) ◽  
pp. 2709-2737 ◽  
Author(s):  
Andrea Bonfiglioli ◽  
Ermanno Lanconelli ◽  
Francesco Uguzzoni

Sign in / Sign up

Export Citation Format

Share Document