An analytical solution of rectangular laminated plates by higher-order theory

1998 ◽  
Vol 19 (8) ◽  
pp. 793-806 ◽  
Author(s):  
Fan Yeli ◽  
Lin Fangyong
1994 ◽  
Vol 116 (3) ◽  
pp. 371-378 ◽  
Author(s):  
C. C. Chao ◽  
T. P. Tung ◽  
C. C. Sheu ◽  
J. H. Tseng

A consistent higher-order theory is developed for cross-ply laminated thick plates under transverse normal impact via an energy variational approach, in which the 3-D surface/edge boundary conditions and interlaminar displacement/stress continuities are satisfied, in an attempt to find the dynamic deformation and all six stress components throughout the plate during the impact process. The dynamic displacement field is expressed in a mixed form of in-plane double Fourier series and cubic polynomials through thickness as 12 variables for each layer. A system of modified Lagrange’s equations is derived with all surface and interface constraints included. The nonlinear impact modal analysis is performed using the Hertz contact law in a patch loading simulation and Green’s function for small time-steps linearization. The 3-D displacements are found with thickness shrinking and stresses generally unsymmetric with respect to the mid-surface. Tensile cracks are predicted at the unimpacted side.


2017 ◽  
Vol 182 ◽  
pp. 533-541 ◽  
Author(s):  
Mokhtar Bouazza ◽  
Yamina Kenouza ◽  
Noureddine Benseddiq ◽  
Ashraf M. Zenkour

2012 ◽  
Vol 19 (2) ◽  
pp. 119-125 ◽  
Author(s):  
Ana M.A. Neves ◽  
António J.M. Ferreira ◽  
Erasmo Carrera ◽  
Maria Cinefra ◽  
Carla M.C. Roque ◽  
...  

AbstractIn this article, Carrera’s Unified Formulation (CUF) is combined with a radial basis function collocation technique. A higher-order theory that considers deformations in the thickness direction was developed under CUF to predict the buckling behaviour of laminated plates. The obtained governing equations and boundary conditions are then interpolated by collocation with radial basis functions. The accuracy and efficiency of the combination of the two techniques for buckling problems of laminated plates are demonstrated through numerical experiments.


Sign in / Sign up

Export Citation Format

Share Document