Guidelines for characterizing concrete creep and shrinkage in structural design codes or recommendations

1995 ◽  
Vol 28 (1) ◽  
pp. 52-55 ◽  
2018 ◽  
Vol 11 (3) ◽  
pp. 564-585 ◽  
Author(s):  
L. M. P. ROSA ◽  
B. R. DANZIGER ◽  
E. M. L. CARVALHO

Abstract The paper presents some results from Rosa’s [1] research that aimed to verify the effect of creep and shrinkage of the concrete in soil-structure interaction. The construction consists in a 17 storeys building. It is set down on shallow foundation, in the central part of the construction, and steel piles, on the boundary. The structure was submitted to instrumentation during construction, including the monitoring of foundation settlements and columns deformation. It was possible to compare the structural design with a numerical refined structural analysis. Comparisons of the structural and foundation design with and without due consideration of soil-structure interaction are also presented. Finally, the different design assumptions were confronted with instrumentation results, both related to foundation settlements and to columns loading as well. Attention is pointed out on the effect of concrete creep and shrinkage in the soil-structure interaction analysis.


Author(s):  
Charles J. Oswald

Measurements made on a long span reinforced concrete arch culvert under 7.3 m (24 ft) of silty clay backfill were compared with results from finite-element analyses of the soil-structure system using the CANDE finite-element code. The culvert strains and deflections and the soil pressure on the culvert were measured during construction and during the following 2.5 years at three instrumented cross sections. The CANDE program was modified to account for the effects of concrete creep and shrinkage strains after it was noted that the measured postconstruction culvert deflection and strains increased significantly whereas the measured soil pressure on the culvert remained relatively constant. Good agreement was generally obtained between measured and calculated values of the culvert strain and deflection and the soil pressure during the entire monitoring period after the code was modified.


1995 ◽  
Vol 28 (7) ◽  
pp. 415-430 ◽  
Author(s):  
Zdenêk P. Bažant ◽  
Sandeep Baweja

Author(s):  
Sing-Ping Chiew ◽  
Yan-Qing Cai

Author(s):  
George P. Kouretzis ◽  
Mark J. Masia ◽  
Clive Allen

2000 ◽  
Vol 1696 (1) ◽  
pp. 171-178
Author(s):  
Xiaoming (Sharon) Huo ◽  
Maher K. Tadros

Recently high-performance concrete (HPC) has been used in highway bridges and has gained popularity for its short-term and prospective long-term performances. Benefits of using HPC include fewer girder lines required, longer span capacity of girders, reduced creep and shrinkage deformation, less prestress losses, longer life cycle, and less maintenance of bridges. Research has been conducted on several issues of structural design of HPC bridge beams. The topics discussed include the effects of section properties of prestressed concrete girders, allowable tensile and compressive stresses, creep and shrinkage deformations of HPC, and prediction of prestress losses with HPC. The results from a parametric study have shown that a section that can have a large number of strands placed in its bottom flange is more suitable for HPC applications. The use of 15-mm-diameter prestressing strands allows the higher prestressing force applied on sections and can provide more efficiency in HPC bridges. The research results also indicate that the allowable compressive strength of HPC has a major effect on the structural design of bridges, whereas the allowable tensile stress has a minor effect on the design. Equations for predicting prestress losses based on the experimental and analytical results are recommended. The recommended equations consider the effects of lower creep and shrinkage deformations of HPC.


Sign in / Sign up

Export Citation Format

Share Document