Analytical method for determining the inverse functions of a system of nonlinear equations describing the static characteristics of a wind-tunnel strain-gauge balance

2000 ◽  
Vol 43 (1) ◽  
pp. 8-11
Author(s):  
A. L. Buivolov
2019 ◽  
Vol 10 (4) ◽  
pp. 877-886 ◽  
Author(s):  
Chhavi Mangla ◽  
Musheer Ahmad ◽  
Moin Uddin

Open Physics ◽  
2012 ◽  
Vol 10 (1) ◽  
Author(s):  
Hossein Jafari ◽  
Mohammad Saeidy ◽  
Dumitru Baleanu

AbstractThe variational iteration method (VIM) proposed by Ji-Huan He is a new analytical method for solving linear and nonlinear equations. In this paper, the variational iteration method has been applied in solving nth-order fuzzy linear differential equations with fuzzy initial conditions. This method is illustrated by solving several examples.


Author(s):  
Chuan He ◽  
Gang Zhao ◽  
Aizeng Wang ◽  
Fei Hou ◽  
Zhanchuan Cai ◽  
...  

AbstractThis paper presents a novel algorithm for planar G1 interpolation using typical curves with monotonic curvature. The G1 interpolation problem is converted into a system of nonlinear equations and sufficient conditions are provided to check whether there is a solution. The proposed algorithm was applied to a curve completion task. The main advantages of the proposed method are its simple construction, compatibility with NURBS, and monotonic curvature.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6167
Author(s):  
Fang Feng ◽  
Guoqiang Tong ◽  
Yunfei Ma ◽  
Yan Li

In order to get rid of the impact of the global financial crisis and actively respond to global climate change, it has become a common choice for global economic development to develop clean energy such as wind energy, improve energy efficiency and reduce greenhouse gas emissions. With the advantages of simple structure, unnecessary facing the wind direction, and unique appearance, the vertical axis wind turbine (VAWT) attracts extensive attention in the field of small and medium wind turbines. The lift-type VAWT exhibits outstanding aerodynamic characteristics at a high tip speed ratio, while the starting characteristics are generally undesirable at a low wind speed; thus, how to improve the starting characteristics of the lift-type VAWT has always been an important issue. In this paper, a lift-drag combined starter (LDCS) suitable for lift-type VAWT was proposed to optimize the starting characteristics of lift-type VAWT. With semi-elliptical drag blades and lift blades equipped on the middle and rear part outside the starter, the structure is characterized by lift-drag combination, weakening the adverse effect of the starter with semi-elliptical drag blades alone on the output performance of the original lift-type VAWT and improving the characteristics of the lift-drag combined VAWT. The static characteristic is one of the important starting characteristics of the wind turbine. The rapid development of computational fluid dynamics has laid a solid material foundation for VAWT. Thus the static characteristics of the LDCS with different numbers of blades were investigated by conducting numerical simulation and wind tunnel tests. The results demonstrated that the static torque coefficient of LDCS increased significantly with the increased incoming wind speed. The average value of the static torque coefficient also increased significantly. This study can provide guidelines for the research of lift-drag combined wind turbines.


SPIN ◽  
2021 ◽  
pp. 2140004
Author(s):  
Cheng Xue ◽  
Yuchun Wu ◽  
Guoping Guo

While quantum computing provides an exponential advantage in solving the system of linear equations, there is little work to solve the system of nonlinear equations with quantum computing. We propose quantum Newton’s method (QNM) for solving [Formula: see text]-dimensional system of nonlinear equations based on Newton’s method. In QNM, we solve the system of linear equations in each iteration of Newton’s method with quantum linear system solver. We use a specific quantum data structure and [Formula: see text] tomography with sample error [Formula: see text] to implement the classical-quantum data conversion process between the two iterations of QNM, thereby constructing the whole process of QNM. The complexity of QNM in each iteration is [Formula: see text]. Through numerical simulation, we find that when [Formula: see text], QNM is still effective, so the complexity of QNM is sublinear with [Formula: see text], which provides quantum advantage compared with the optimal classical algorithm.


Author(s):  
Scott A. Burns

Abstract A monomial-based method for solving systems of algebraic nonlinear equations is presented. The method uses the arithmetic-geometric mean inequality to construct a system of monomial equations that approximates the system of nonlinear equations. This “monomial method” is closely related to Newton’s method, yet exhibits many special properties not shared by Newton’s method that enhance performance. These special properties are discussed in relation to engineering design optimization.


Sign in / Sign up

Export Citation Format

Share Document