Application of the sol-gel method for the preparation of some inorganic ion-exchangers in spherical form

1975 ◽  
Vol 24 (2) ◽  
pp. 353-359 ◽  
Author(s):  
V. Baran ◽  
R. Caletka ◽  
M. Tympl ◽  
V. Urbánek
2011 ◽  
Vol 11 (5) ◽  
pp. 505-515 ◽  
Author(s):  
Natalia Chubar

Highly selective materials and effective technologies are needed to meet the increasingly stronger drinking water standards for targeted ionic species. Inorganic ion exchangers based on individual and mixed-metal hydrous oxides (or mixed adsorbents that contain inorganic ion exchangers in their composition) are adsorptive materials that are capable of lowering the concentrations of anionic contaminants, such as H2AsO4−, H3AsO3, F−, Br−, BrO3−, HSeO4−, HSeO3− and H3BO3, to 10 μg/L or less. To achieve a higher selectivity towards arsenate, a new ion exchanger based on Mg–Al hydrous oxides was developed by a novel, cost-effective and environmentally friendly synthesis method via a non-traditional (alkoxide-free) sol-gel approach. The exceptional adsorptive capacity of the Mg–Al hydrous oxides towards H2AsO4− (up to 200 mg[As]/gdw) is due to the high affinity of this sorbent towards arsenate (steep equilibrium isotherms) and its fast adsorption kinetics. Because of the mesoporous (as determined by N2 adsorption and SEM) and layered (as determined by XRD and FTIR) structure of the ion-exchange material as well as the abundance of anion exchange sites (as determined by XPS and potentiometric titration) on its surface the material demonstrated very competitive (or very high) removal capacity towards other targeted anions, including fluoride, bromide, bromate, selenate, selenite, and borate.


The green emitting phosphor based on manganese activated zinc silicate was successfully synthesized by the sol – gel method using hydrochloric acid. The suitable molar ratio of the initial components is Zn(CH3COO)2: MnSO4: TEOS = 1.98: 0.02: 1 corresponding to the product formula Zn1.98Mn0,02SiO4. The suitable pH value for the gelation is 3, ratio of water phase: ethanol phase = 1:1 and the product when calcining the obtained gel at 10000C for 60 minutes has highest luminescence intensity. The synthesized phosphor consists of Zn2SiO4 with rhombohedral structure and emits a green light at the 525 nm wavelength when excited by the 325 nm UV radiation. The produced sample has spherical form with the particles size being 100 nm.


2014 ◽  
Vol 29 (8) ◽  
pp. 807
Author(s):  
WANG Min ◽  
NIU Chao ◽  
DONG Zhan-Jun ◽  
CHE Yin-Sheng ◽  
DONG Duo ◽  
...  

2011 ◽  
Vol 10 (2) ◽  
pp. 187-192 ◽  
Author(s):  
Ramona-Crina Suciu ◽  
Marcela Corina Rosu ◽  
Teofil Danut Silipas ◽  
Emil Indrea ◽  
Violeta Popescu ◽  
...  

Author(s):  
Dong XU ◽  
Qi SONG ◽  
Ke ZHANG ◽  
Hong-Xing XU ◽  
Yong-Tao YANG ◽  
...  
Keyword(s):  
Sol Gel ◽  

2009 ◽  
Vol 24 (4) ◽  
pp. 848-852 ◽  
Author(s):  
Cheng-Shun LI ◽  
Yu-Jun ZHANG ◽  
Jing-De ZHANG

Sign in / Sign up

Export Citation Format

Share Document