New inorganic (an)ion exchangers with a higher affinity for arsenate and a competitive removal capacity towards fluoride, bromate, bromide, selenate, selenite, arsenite and borate

2011 ◽  
Vol 11 (5) ◽  
pp. 505-515 ◽  
Author(s):  
Natalia Chubar

Highly selective materials and effective technologies are needed to meet the increasingly stronger drinking water standards for targeted ionic species. Inorganic ion exchangers based on individual and mixed-metal hydrous oxides (or mixed adsorbents that contain inorganic ion exchangers in their composition) are adsorptive materials that are capable of lowering the concentrations of anionic contaminants, such as H2AsO4−, H3AsO3, F−, Br−, BrO3−, HSeO4−, HSeO3− and H3BO3, to 10 μg/L or less. To achieve a higher selectivity towards arsenate, a new ion exchanger based on Mg–Al hydrous oxides was developed by a novel, cost-effective and environmentally friendly synthesis method via a non-traditional (alkoxide-free) sol-gel approach. The exceptional adsorptive capacity of the Mg–Al hydrous oxides towards H2AsO4− (up to 200 mg[As]/gdw) is due to the high affinity of this sorbent towards arsenate (steep equilibrium isotherms) and its fast adsorption kinetics. Because of the mesoporous (as determined by N2 adsorption and SEM) and layered (as determined by XRD and FTIR) structure of the ion-exchange material as well as the abundance of anion exchange sites (as determined by XPS and potentiometric titration) on its surface the material demonstrated very competitive (or very high) removal capacity towards other targeted anions, including fluoride, bromide, bromate, selenate, selenite, and borate.

2018 ◽  
Vol 106 (3) ◽  
pp. 207-216 ◽  
Author(s):  
Fatma H. El-Sweify ◽  
Ehab A. A. El-Shazly ◽  
Shreen M. Salama

AbstractThe sorption behaviors of Ce(III), as a representative of trivalent lanthanide ions, and Te(IV), Zr(IV) and Nb(V) as fission products representatives, as well as Hf(IV), from various aqueous media on some synthesized inorganic exchangers, as well as commercially available organic ion exchangers were studied and compared. Organic cation exchanger Dowex-50WX8 and organic anion exchangers AG-1X8 and AG-2X8 were utilized. Synthesized inorganic ion exchangers were zirconium titanium phosphate (ZrTiP) of different Zr:Ti mole ratios and ceric tungstate (CeW). The sorption was carried out from mineral acid solutions as well as EDTA and DTPA solutions. The radioactive isotopes,95Zr,95Nb,123mTe,141Ce and181Hf were used to trace the sorption behaviors of the corresponding elements, which were studied in mixtures of them. The differences between the sorption behaviors of the studied metal ionic species on both kinds of ion exchangers were interpreted and discussed in this work.


2020 ◽  
Vol 108 (11) ◽  
pp. 901-912
Author(s):  
Mohamed A. Ghamry ◽  
Fatma H. El-Sweify ◽  
Alaa El-Din A. Abdel-Fattah ◽  
Shorouk M. Aly ◽  
Mohamed F. El-Shahat

AbstractSamples of Egyptian monazite ore obtained from black sand of Abu-Khashaba, Rashied (Rosetta) area on the Mediterranean Sea coast were analyzed for some lanthanides and coexisting elements using instrumental neutron activation analysis (INAA). The analyses were carried out qualitatively and quantitatively for the elements Ce, Nd, Eu, Gd, Tb, Yb and Sc, La as well as the accompanying elements Co, Cr, Fe, Hf, Nb, Zn, Zr in addition to the actinides Th and U; whereas after relatively longer decay time the following lanthanide elements were analyzed: Ce, Nd, Eu, Gd, Tb, Yb and Sc, beside the accompanying elements Co, Cr, Fe, Hf, Nb, Zn, Zr and Th. Two certified reference materials (CRM) were used in this study. For sorption studies, radioactive isotopes 141Ce, 160Tb, 169Yb, 95Zr, 181Hf, and 95Nb were prepared by neutron irradiation to trace the adsorption behaviors of their corresponding elements under certain conditions. Furthermore, radiochemical separation of the analyzed elements in the irradiated monazite samples in sulfuric acid solutions was carried out. Ion exchange technique was applied under static and dynamic conditions and the employed inorganic ion exchangers were locally synthesized and characterized using FT-IR and scanning electron microscopy (SEM) tools. Good group separation of the analyzed lanthanide elements from the accompanying elements was achieved.


1974 ◽  
Vol 36 (10) ◽  
pp. 2377-2383 ◽  
Author(s):  
Sten Ahrland ◽  
Nils-Olof Björk ◽  
Robert Blessing ◽  
Richard Herman

1968 ◽  
Vol 40 (7) ◽  
pp. 1135-1136 ◽  
Author(s):  
Richard B. Hahn ◽  
Henry C. Klein

2021 ◽  
Vol 335 ◽  
pp. 03008
Author(s):  
Khizar Mushtaq ◽  
Pui May Chou ◽  
Chin Wei Lai

Tungsten being a transition element, forms oxide compounds of various oxidation states that enables it to form nanocolloids of tungsten oxide dihydrate. Multiple methods have been used in recent years to synthesize nano tungsten oxide dihydrate, including sol-gel synthesis, electrochemical deposition, hydrothermal synthesis and anodization. However, a universally accepted synthesis method for this material is not offered. The most appropriate method and its corresponding processing parameters for the synthesis of nano tungsten oxide dihydrate colloids were presented in the present study. The objective of the present study was to investigate the effect of processing parameters, i.e. applied voltage, temperature and anodizing duration on the particle size of nanocolloids. It is found that anodization is the easiest, efficient, and cost-effective method to synthesize the colloidal solution of nano tungsten oxide dihydrate. Conducting the synthesis at room temperature at a voltage of 50 V for 60 minutes yields the product with particle size of 40 – 60 nm, which can be used in wide array of applications. This paper also highlights the research gaps for future work and gives recommendations to extend this study particularly for the industrial application of tungsten oxide.


Sign in / Sign up

Export Citation Format

Share Document